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for Complex Work 

The medium through which training in the workplace is delivered has been changing 
in recent years to offer a more personalized and immersive experience. The inven-
tion of virtual reality (VR) and augmented reality (AR) platforms has created oppor-
tunities to take a more hands-on approach to familiarizing oneself with a task or 
environment with mitigated time and monetary commitments. Written assessments 
are being swiftly replaced with more interactive and scientifcally validated train-
ing simulations and this essential technology is in high demand in the government 
and private sectors. This book highlights many of the ways simulation-based train-
ing can be leveraged to create personalized training curricula for those in high-risk 
careers and how it can be assessed successfully. 

AI and Gamifcation Technologies for Complex Work uncovers the use of artifcial 
intelligence (AI) and machine learning (ML) for the purposes of creating adaptive, 
personalized training for individuals who work in complex jobs. It covers adaptive 
simulation-based training, fghting skill decay through game-based training, and ad-
ditional uses of AI/ML and other tools in measuring human performance. Insights 
from professionals and experts in the felds of simulation and training provide read-
ers with information about current applications of AI/ML in creating adaptive or 
personalized training, as well as investigations into the future of simulation and 
game-based training, as virtual and augmented realities proliferate modern training 
programs. The book looks at how data science, AI, and ML contribute to adaptive 
training systems and the reader is encouraged to look further into the engines that 
drive adaptive training while devising their own systems for training in complex jobs. 

This book is ideal for professionals in human factors engineering and psychology, 
artifcial intelligence, military training and simulation, game development, data sci-
ence, modeling and simulation and industrial and organizational psychology. 
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Foreword 
INTRODUCTION 

Contemporary workplaces are increasingly characterized by complexity, automation, 
and the need for sophisticated training and assessment techniques to keep pace with 
technological advancement. Within this evolving landscape, artifcial intelligence 
(AI) and gamifcation have emerged as transformative technologies for enhancing 
human performance across various domains. From military training to healthcare 
simulation, and from human resource processes to team development, organizations 
are seeking innovative methods to bridge the gap between current capabilities and 
future needs. This edited volume represents a comprehensive exploration of how 
AI and gamifcation are reshaping performance assessment, training methodolo-
gies, and decision-making processes in complex work environments. The authors, 
drawing from diverse backgrounds in psychology, computer science, military train-
ing, healthcare, human factors, and industrial/organizational psychology, provide 
evidence-based insights into the theoretical foundations, practical applications, and 
ethical considerations of these emerging technologies. By examining the intersection 
of AI, gamifcation, and complex work, this collection offers a timely and valuable 
resource for researchers, practitioners, and leaders interested in leveraging cutting-
edge technologies to enhance human performance and organizational effectiveness. 

UNIFYING THEMES 

Three primary themes emerge across the chapters in this volume: adaptive training 
technologies, human-AI collaboration, and the ethical dimensions of AI implemen-
tation. These themes serve as conceptual bridges connecting the various domains 
and applications discussed throughout the book. 

ADAPTIVE TRAINING TECHNOLOGIES 

A central theme throughout this volume is the development and implementation 
of adaptive training technologies that respond dynamically to individual learner 
needs. Adaptive training systems, powered by increasingly sophisticated AI 
algorithms and frameworks, represent a signifcant advancement over traditional 
“one-size-fts-all” approaches to training and education. These systems continu-
ously monitor learner performance, assess comprehension and skill acquisition 
in real time, and adjust instructional content, diffculty levels, and feedback 
mechanisms accordingly. The fundamental premise underlying adaptive training 
is that personalization enhances learning outcomes by ensuring that instruction 
consistently targets each learner’s “sweet spot” – challenging enough to promote 
growth while avoiding boredom, frustration, and content with limited learn-
ing value. As demonstrated in various chapters, these adaptive systems serve 
diverse training contexts, from military close air support missions to healthcare 



 

 
 
 
 
 
 
 
 

 
 
 
 
 

 

 

 

 
 
 
 
 
 
 

 

 

 
 
 

viii Foreword 

simulations to team coordination exercises. The empirical evidence presented 
consistently indicates that well-designed adaptive training systems can signif-
cantly improve learning effciency, enhance skill transfer, and boost learner 
engagement. What makes these systems particularly powerful is their ability 
to capture and process multimodal data – including text, speech, physiological 
signals, and behavioral patterns – to develop increasingly robust and accurate 
models of learner competence and performance. By leveraging these rich data 
sources, adaptive training technologies can provide more precise instruction 
and more meaningful feedback than traditional training approaches, ultimately 
accelerating skill development and improving performance outcomes in complex 
operational environments. 

HUMAN-AI COLLABORATION 

The second unifying theme explores the evolving relationship between humans 
and AI in complex work environments, emphasizing collaboration rather than 
replacement. Across chapters, the authors consistently highlight that the most 
effective implementations of AI and gamifcation technologies are those that 
augment human capabilities rather than attempt to automate them entirely. This 
perspective represents a signifcant shift from earlier concerns about AI displac-
ing human workers toward a more nuanced understanding of the complementary 
strengths of human and artifcial intelligence. In personnel selection and assess-
ment contexts, AI systems can analyze vast quantities of candidate data, iden-
tify patterns, and predict performance outcomes with impressive accuracy; yet, 
human judgment remains essential for contextualizing these insights and mak-
ing fnal decisions. In training environments, AI can adapt content and provide 
immediate feedback, but human instructors are crucial for establishing learn-
ing objectives, designing meaningful scenarios, and facilitating refective prac-
tice. Even in highly automated domains, the research presented demonstrates 
that human oversight, intervention capabilities, and strategic decision-making 
remain indispensable elements of effective human-machine systems. The concept 
of human-AI collaboration extends beyond mere division of labor to encompass 
trust building, explainability, and interface design considerations that optimize 
interaction between human users and AI systems. By focusing on collaboration 
rather than replacement, this volume offers a more productive and realistic vision 
of AI implementation that acknowledges both the remarkable capabilities of arti-
fcial intelligence and the unique contributions of human judgment, creativity, 
and adaptability. 

ETHICAL DIMENSIONS OF AI IMPLEMENTATION 

The third unifying theme addresses the ethical considerations and challenges 
associated with implementing AI in human performance assessment and train-
ing. As AI systems become increasingly integral to decision-making processes 
that affect human careers, development opportunities, and work experiences, 
ensuring fairness, transparency, and accountability becomes paramount. Several 



 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

ix Foreword 

chapters highlight concerns regarding algorithm bias, noting that AI systems 
trained on historical data may perpetuate or even amplify existing inequities in 
selection, evaluation, and promotion decisions. Various authors emphasize the 
importance of rigorous validation processes, ongoing monitoring, and diverse 
training data to mitigate algorithmic bias. Privacy considerations represent 
another signifcant ethical dimension, as AI-enhanced training and assessment 
systems typically collect and analyze extensive personal data, from interview 
responses to physiological reactions to behavioral patterns. The responsible gov-
ernance of this data, including clear policies regarding collection, storage, usage, 
and access rights, features prominently in discussions of ethical implementation. 
Finally, the issue of transparency runs through multiple chapters, with authors 
advocating for explainable AI (XAI) approaches that enable stakeholders to 
understand how and why specifc recommendations or decisions are reached. By 
confronting these ethical dimensions directly, the volume provides a balanced 
perspective that acknowledges both the tremendous potential of AI technologies 
and the responsibility to implement them in ways that respect human dignity, 
promote fairness, and earn stakeholder trust. This nuanced treatment of ethical 
considerations offers valuable guidance for researchers and practitioners seek-
ing to harness the benefts of AI while avoiding pitfalls that could undermine its 
acceptance and effectiveness. 
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A Theoretical Framework 1 
for Performance Analysis 
in Competency-Based 
Experiential Learning 
Environments 

Caleb Vatral, Gautam Biswas, and 
Benjamin Goldberg 

INTRODUCTION 

The successful integration of complex cognitive and psychomotor skills in both 
individual and team contexts is necessary for competent performance outcomes in 
today’s workplaces. Due to this growing complexity and demand, effective learning 
and training programs must be developed that teach these abilities in realistic yet 
safe contexts. Competency-based experiential learning environments are an increas-
ingly popular paradigm for this kind of training and learning, where students are 
trained in real-world situations through hands-on interaction with the subject. As 
experiential learning environments continue to proliferate, there is an increasing 
need for robust modeling schemes capable of effectively assessing both individual 
and group learning performances and behaviors. Nevertheless, the implementation 
of effcient and effective learner models in these complex environments poses sev-
eral challenges. These challenges encompass the accurate tracking and interpreta-
tion of learners’ psychomotor activities and cognitive behaviors in both space and 
time, the precise monitoring of their progress across the multiple psychomotor and 
cognitive dimensions, and the generation of adaptive personalized feedback that is 
constructive and addresses individual learners’ diffculties and suboptimal perfor-
mance by providing personalized recommendations. 

In this chapter, we present a theoretical framework for multimodal learner mod-
eling, performance analysis, and feedback generation to support debriefng and 
after-action reviews (AARs). Our framework, which is grounded in the theories 
of competency-based education (CBE) and experiential learning, combines multi-
modal learning analytics (MMLA), distributed cognition, and cognitive task analy-
sis (CTA) to produce an effective model of learner performance and behaviors and 
generate feedback interventions. Our framework utilizes a mixed-methods approach 
that systematically breaks down a training task into its constituent components, 
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2 AI and Gamifcation Technologies for Complex Work 

develops measures and algorithms to support task assessments, and then generates 
understandable and actionable feedback for the instructor and the trainees that helps 
to explain the generated assessments. 

As a frst step, our CTA methodology generates a comprehensive hierarchical 
model of the relevant cognitive, behavioral, and psychomotor tasks and problem-
solving strategies employed by the learners. Using the CTA model as a guide, we 
conduct a distributed cognition analysis to interpret and categorize learner data cap-
tured across multiple modalities (such as visual, speech, physiological, and logged 
activities in the mixed-reality (MR) environment). This analysis aids in generat-
ing needs analysis and feature engineering to support MMLA, effectively organiz-
ing and interpreting raw learner data. We leverage strong foundations in CBE to 
construct a hierarchical assessment model that is populated from our analyses of 
the multimodal data. This hierarchical learner competency model utilizes Bayesian 
inferencing techniques to aggregate information and generate insights about learn-
ers’ cognitive states at multiple levels of abstraction. The information from the hier-
archical task model can be mapped onto performance metrics that can be calculated 
across time. Finally, using the insights generated by the hierarchical assessment 
model, we generate feedback that is designed to be presented back to learners as well 
as their instructors to help them understand how the assessment metrics were gener-
ated. In addition, we can provide suggestions for actionable information on how to 
improve learners’ performance. 

CASE STUDY 

In the chapter, we will use a case study of soldiers training in dismounted battle 
drills in MR environments to illustrate each component of our learner modeling 
framework (Figure 1.1). Then, using the lessons learned from this case study, we will 
discuss the application of our framework to a broader class of experiential learning 
and training environments. 

In Fall 2021, infantry fre teams participated in a study where they trained on two 
dismounted battle drills at Fort Campbell US Army Installation: Enter and Clear 
a Room (ECR) and Break Contact (BC). The ECR drill involves entering a new 
room, neutralizing enemy combatants, securing civilians, and exiting safely. The 
BC drill involves exploring a region with potential enemy forces, breaking contact, 

FIGURE 1.1 The two dismounted battle drills run on the SAM-T and used for this case 
study. Left: Break Contact; Right: Enter and Clear a Room. 



 

  

 

 

 

3 A Theoretical Framework for Performance Analysis 

and retreating to a safe distance. Both drills require proper protocols and best prac-
tices to minimize risks and casualties. The Squad Advanced Marksmanship Trainer 
(SAM-T) system, an MR battle drill simulator, was used for training. The SAM-T 
projects a Virtual Battle Space 3 (VBS3) simulation onto screens setup in a physical 
environment space, allowing the team to move around in the physical space while 
simultaneously interacting with the simulation using modifed weapons. The system 
reacts adaptively to soldier weapon fre and instructors could also modify the simula-
tion in real time in response to other trainee actions. The system recorded log infor-
mation about simulation events, including weapon fre messages and entity positions. 
Video and audio of the trainees were collected using the Generalized Intelligent 
Framework for Tutoring (GIFT). The data was synchronized with the VBS3 and 
SAM-T logs, allowing for offine processing by our proposed methods. The recorded 
data and subsequent analyses can be played back through a GIFT Gamemaster inter-
face to support debriefng and AAR. 

BACKGROUND 

COMPETENCY-BASED EDUCATION 

CBE is a learner-centric approach that focuses on mastering specifc competencies 
and skills, rather than traditional curriculum (Carraccio et al., 2002). It allows for 
personalized learning paths and fexible pacing, aligning with modern workplace 
demands and focusing on the attainment of relevant skill sets for organizational 
success. CBE, rooted in behaviorist theories of education, gained its frst wave of 
advocacy in the late 1960s through the 1980s (Morcke et al., 2013). However, it 
faced increased scrutiny in the mid-1970s due to the shift away from the behavioral 
objectives curriculum model. The third wave of advocacy began in the early 2010s, 
with infuential publications, renewed federal policy, and critical review of empirical 
evidence (Cooke et al., 2010; Gervais, 2016; Johnstone & Soares, 2014). Critics of 
CBE argue that its behaviorist foundation links curriculum to assessment and regu-
lation of profciency, rather than teaching and learning activities (Naranjo, 2022). 
They contend that, in addition to learning behaviorally, students learn affectively 
and socially, which cannot be objectively specifed for competency goals (Stenhouse, 
1975). Later arguments in response to this humanistic criticism have tried to expand 
CBE to harmonize with a constructivist curriculum framework (Morcke et al., 2013). 
In this work, we adopt this constructivist approach by harmonizing elements of CBE 
with the humanistic and constructivist experiential learning theory, thus only using 
CBE as part of a larger framework of CBEL, as will be described in the next sections. 

One of the fundamental aspects of CBE programs is that competencies must be 
measurable, using various assessment methods like exams, rubric-based demonstra-
tions, self-assessment refections, and competency portfolios (Rowan, 2016). Best 
practices suggest measuring competency across the course curriculum in a variety of 
ways to establish program validity and comprehensively evaluate students. Classical 
competency assessment methods, while benefcial for education, also pose chal-
lenges due to the need for signifcant human judgment. Without a comprehensive 
standardized evaluation protocol, evaluations and grades can be labor-intensive for 



 

 
 

 

 
 

 

 

  

 

 

4 AI and Gamifcation Technologies for Complex Work 

instructors and incomparable across classes (Allen, 2005; York et al., 2015). In this 
work, we work toward solving these signifcant challenges by constructing a com-
prehensive theoretical framework for collection, analysis, and presentation of multi-
modal learner activity data in competency-based experiential training environments. 

EXPERIENTIAL LEARNING 

Experiential learning is a pedagogical method that encourages active engagement, 
refection, and practical application of knowledge and skills. It bridges the gap 
between theory and practice, allowing learners to construct knowledge in real-
world contexts. Kolb’s Theory of Experiential Learning, rooted in Dewey, Levin, 
and Piaget’s experiential work, is a signifcant theoretical framework for experi-
ential learning (Kolb, 2014; McCarthy, 2017). It posits that learning is a dynamic 
process, involving direct experiences, and consists of four iterative and adaptive 
stages. 

1. Concrete Experience: Refers to the initial encounter or experience with 
something new or unfamiliar, involving a learner actively engaging in the 
experience, either through direct observation or through participation. 

2. Refective Observation: After the concrete experience, individuals refect 
on the experience and observe what happened, paying attention to the feel-
ings, thoughts, and reactions they had during the experience. 

3. Abstract Conceptualization: In this stage, learners attempt to make sense 
of the experience by creating theories or generalizations. They seek to 
understand the underlying principles or concepts that explain the observed 
events. 

4. Active Experimentation: The fnal stage involves applying the theories 
and concepts derived from the refective observation and conceptualization 
to a new situation or task. It is the stage of testing and applying the newly 
acquired knowledge and skills. 

Kolb’s Theory of Experiential Learning emphasizes active participation, refec-
tion, and knowledge application in the learning cycle, making it a valuable frame-
work for designing impactful experiences. While the theory is not without some 
criticism, it remains highly infuential in experiential learning. Our work adopts 
Kolb’s Theory of Experiential Learning as the primary theoretical basis for the 
design of the framework. Among the most common criticisms of experiential learn-
ing, there is still a great deal of ambiguity regarding the design of the experiences 
that make up each component of Kolb’s cycle (Morris, 2020). This issue has been 
present since the early days of experiential learning, with scholars like John Dewey 
recognizing that not all experiences are equally educative. More recently, a system-
atic review of experiential learning literature has noted a lack of consensus regarding 
the defnition of an experience among practitioners of Kolb’s model, which serves to 
further substantiate earlier criticisms of Kolb’s model, which describe it as “highly 
muddled” in that regard (Bergsteiner et al., 2010). In this work, we propose that this 
problem of how to design experiences can be resolved by harmonizing the feld of 
experiential learning with the feld of CBE. 



      

 

 
 

 
 
 

 
 
 

 

 

 

5 A Theoretical Framework for Performance Analysis 

MERGING OF TWO FIELDS: MODERN RESEARCH IN CBEL 

The integration of CBE and experiential learning has been a topic of research for 
many years, dating back to the publication of Reynolds in 1981 (Reynolds, 1981). 
Scholars have found a signifcant practical union between these two educational 
paradigms, with some even suggesting they are explicitly dependent on each other 
(Keenan, 2013). This has led to the term Competency-Based Experiential Learning 
being coined to describe the joint feld. Building on this more recent work (Hoessler 
& Godden, 2021; Owens & Goldberg, 2022), in this chapter, we argue that the har-
monized feld of CBEL solves two major theoretical and methodological challenges 
associated with CBE and experiential learning alone. 

First, combining CBE with experiential learning fosters a humanistic construc-
tivist approach, distinguishing CBEL from the behaviorist origins of CBE. This 
combined approach specifes relational and soft-skill competencies often missing in 
CBE models. For example, Hoessler & Godden (2021) specifes many relational and 
intangible competency categories in their listing of CBEL/OBEL outcomes, includ-
ing interpersonal qualities, growth and integration, student and society relations, 
etc. Since Kolb’s model explicitly involves learners’ humanistic refections on their 
feelings about their experiences, this approach allows for effective development and 
evaluation of these competencies. Second, combining CBE with experiential learning 
allows for more grounded, observable experiences, addressing the design challenge 
of concrete experiences. This approach aligns competency outcomes, activities, and 
assessments around a common understanding of the experience’s vision and pur-
pose. Deeper learning is supported by learning experiences that have constructively 
matched objectives, activities, and assessments (Biggs & Tang, 2007). 

While there are clearly signifcant benefts to the combined feld of CBEL, there 
also remain signifcant challenges, including the challenges of effective assessment and 
feedback, which this chapter’s proposed framework is designed to address. Assessment 
and feedback are crucial for effective learning, but there are challenges related to per-
sonalization and scalability of formative feedback mechanisms. Proper personaliza-
tion involves frequent, specifc feedback for each learner, which benefts learners by 
developing unique skills. However, this requires signifcant human judgment from 
instructors and can lead to incomparable evaluations and grades. Additionally, more 
frequent and specifc feedback is more effective but requires more time for each stu-
dent. To combat these issues surrounding personalization and scalability, this chapter 
proposes a comprehensive framework for automated assessment and feedback genera-
tion within CBEL environments. By building AI-driven computational tools to sup-
port these processes, we can support instructors in delivering timely, frequent, and 
specifc feedback to a large number of students of various populations. In the next sec-
tion, we will detail the design of the proposed framework at a conceptual level, which 
will then be followed by a discussion of an example implementation. 

THEORETICAL FRAMEWORK 

Our theoretical framework can be broadly characterized by the Input-Process-
Output (IPO) structure (Figure 1.2). We use multimodal learner data collected dur-
ing a training exercise as the frst component of the model’s input. Depending on 
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FIGURE 1.2 The high-level structure of the theoretical framework for learner modeling, evaluation, and feedback generation. 
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7 A Theoretical Framework for Performance Analysis 

the particular training setting, this data may take many different forms, although 
it frequently consists of recording audio, video, system logs, and eye tracking data. 
Then, the task context, the system’s other input, is built using a qualitative analysis 
of this data. Specifcally, we perform CTA and DiCoT analysis, which will be cov-
ered in more detail in the subsequent sections. We include this task context as an 
input into the model as every task environment has distinct qualities that call for a 
corresponding unique analysis. Next, in the processing step, the model uses a three-
phase MMLA algorithm to analyze the raw learner data through the lens of the task 
context. In order to transform the unstructured learner data into an organized and 
interpretable format, we frst conduct action recognition. Next, we carry out task 
segmentation, which divides the entire training exercise into distinct sections that 
can be thoroughly examined, based on the recognized actions. Third, the hierarchi-
cal competency evaluation phase receives each of these chunks and uses the learner 
data to create a series of evaluations based on the expected behaviors specifed in the 
task context. Finally, the output phase receives the processed learner data and related 
evaluations and converts them into feedback that the instructors and trainees may 
use for debriefng and AAR procedures. In our implementation of the framework, 
this learner feedback takes two forms: (1) an annotated learner activity record that 
allows instructors and trainees to quickly and easily navigate and review a training 
session and (2) performance analysis over time, which allows instructors and train-
ees to easily monitor learner progress and areas for improvement. 

COGNITIVE TASK ANALYSIS 

At the center of the analysis framework is the cognitive task model, which represents 
the primary learner model of the system. CTA is a methodical framework for under-
standing the cognitive mechanisms behind complex tasks performed by individuals and 
teams (Schraagen et al., 2000). It involves analyzing and breaking down tasks to identify 
underlying cognitive activities, decision-making processes, and problem-solving tech-
niques. CTA builds a hierarchical model, representing cognitive processes involved in 
task execution. High levels represent abstract cognitive constructs, while each deepen-
ing level represents concrete and observable learner behaviors. The model’s hierarchical 
structure allows for inferences about higher-level cognitive constructs, behaviors, strate-
gies, and plans by understanding sequences of lower-level observable learner behavior 
(Biswas et al., 2019). This approach links low-level observable actions to higher-level 
strategies and behaviors. CTA models are created through a structured qualitative anal-
ysis of information from multiple sources. A preliminary analysis identifes the task’s 
goals, subtasks, and cognitive demands. Domain experts and task performers provide 
additional insights through interviews, observations, and think-aloud protocols. These 
data sources are synthesized to create hierarchical structures that explain the sequential 
fow of cognitive activities during task execution. These models provide a comprehen-
sive understanding of the cognitive complexities involved in task performance. 

This work builds upon a fairly substantial history of the use of CTA for learner 
modeling. Much of this historical work has been focused on applications to K12 
open-ended learning environments. Previous research has combined hierarchical 
CTA with sequencing mining to understand learners’ strategies in the Betty’s Brain 
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teachable agent learning environment (Kinnebrew et al., 2017). Similar techniques 
have been applied to CTSiM and C2STEM learning environments to generate adap-
tive scaffolding and understand student problem-solving strategies (Emara et al., 
2021). Outside of the K12 domain, CTA methods have also been applied for mod-
eling learner behavior in adult training environments domains. In medical train-
ing domains, studies have found that CTA methods can elicit tacit knowledge and 
improve clinical practice (Swaby et al., 2022). Military training has also seen the 
application of CTA methods, with simulation-based training for medical command 
(Cannon-Bowers et al., 2013) and hierarchical CTA applied to military counterter-
rorism exercises like UrbanSim (Biswas et al., 2019). In our prior work, we utilized 
CTA to generate a hierarchical model and associated quantitative metrics for the 
ECR and BC dismounted battle drills (Vatral et al., 2023a, 2023b). 

Figure 1.3 shows a partial cognitive task model for teamwork within our bat-
tle drill case study domain. From this model, it is easy to see the hierarchical 

FIGURE 1.3 Example cognitive task model for teamwork in the Army battle drill case 
study domain. 
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structure of the tasks, breaking down each high-level idea into further subtasks 
and eventually into observable actions. These lowest-level actions are observed 
and sequenced to infer the higher-level task a participant is performing. For exam-
ple, in the BC drill, if we observe a soldier quickly change from movement to 
taking cover, we might infer that the soldier has changed higher-level tasks due to 
contact with enemy forces. Based on these higher-level actions and the transitions 
between them, we can then perform Event Segmentation, which divides the entire 
training scenario into smaller parts that can be independently examined by the 
competency model (Zhang et al., 2021). We will discuss this in greater detail later. 
Because every higher-level action in the task model may have wildly different cri-
teria and, thus, be scored wildly differently, event segmentation is a crucial stage 
in the assessment process. 

However, the cognitive task model by itself is unable to fully contextualize higher-
level actions in complicated and open-ended training contexts. Considering the BC 
drill’s movement patterns from our case study, without additional information, we 
are unable to determine if the team’s basic movement is a component of the break 
phase that follows contact with the enemy troops, or if it is part of the initial explora-
tion phase. Instead, we need to provide more domain information in order to clarify 
which phase this movement falls in. In our framework, this additional contextual 
information is provided by a distributed cognition analysis. 

DISTRIBUTED COGNITION 

Our theoretical framework extends the insights generated by CTA by combining the 
CTA model with additional domain information provided by a distributed cognition 
analysis. Distributed cognition is a theory of human cognition that challenges the 
traditional individualistic view of cognition by suggesting that cognition occurs not 
only in the mind of the individual alone, but rather as a complex interaction between 
individual minds, other people, and the environment in which the cognition is taking 
place (Hutchins, 2000). Distributed cognition views the complete activity system as 
the unit of study rather than the individual mind, with the aim of comprehending 
cognition at this system level (Hazlehurst et al., 2008; Rybing, 2018). According to 
Hutchins, cognition occurs in three modalities: within a social group, between inter-
nal and external structures, and across time (Hutchins, 2000). Social group members 
collaborate to solve problems and contribute to a common goal. Internal structures, 
such as tools, offoad cognitive processing, while physical space layout defnes the 
affordances available to participants. Time and temporal evolution is also important, 
as earlier events can infuence the nature of later events. 

The application of distributed cognition requires the selection of one of several 
methodological frameworks that implements the basic theory. Each of these frame-
works has been developed to study distributed cognition applied to various domains 
and scenarios. Examples include the Resource Model for human computer interac-
tion (Wright et al., 2000), the Determining Information Flow Breakdown model for 
organizational learning in medical settings (Galliers et al., 2007), and the Event 
Analysis of Systemic Teamwork framework for submarine interactions (Stanton, 
2014). Because of the importance of teamwork in CBEL environments, as well as 
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following its wide adoption in analyzing trainee behaviors in this work, we adopt 
the Distributed Cognition for Teamwork (DiCoT) model proposed by Blandford and 
Furniss (2006). 

DiCoT is a qualitative analysis framework that categorizes a cognitive system 
into fve themes: information fow, artifact and environment, physical layout, social 
interactions, and temporal evolution. It focuses on how information fows, how 
tools aid cognition, how objects and people are arranged, how social interactions 
affect cognition, and how the system changes over time. The DiCoT methodology 
defnes 18 principles to analyze themes and their interactions in a distributed cog-
nitive system. For example, principle 10: Information Hubs describes that certain 
artifacts in the system are central focuses where different channels of information 
meet. This principle is primarily related to the information fow and artifacts and 
environment themes. By analyzing the distributed cognition system and identify-
ing the manifestations of all 18 principles, we can understand how each DiCoT 
theme contributes to the overall cognition. 

Within the presented framework, we operationalize this DiCoT analysis computa-
tionally through the use of probabilistic constraints. Using BC as an example again, 
our DiCoT study may have shown that the enemy danger is displayed on the screens 
in the training environment. Thus, soldiers moving away from the screen would be 
considered a retreat and would map onto the break phase. This additional informa-
tion allows us to infer that, in our case study, movement toward the SAM-T screen 
indicates that it is occurring during the exploration phase, and movement away from 
the screen indicates that it is occurring during the break phase. The task model, 
which lacks a comprehensive interpretation of the evolving scenario, alone cannot 
interpret the specifc phase of the exercise that the troops are engaged in, unless 
supplemented with additional domain-specifc information from the DiCoT model. 
In addition, the probabilistic constraints resulting from qualitative DiCoT analysis 
provide a methodical way to use a priori domain information to enhance the overall 
learner model. 

MULTIMODAL LEARNING ANALYTICS 

Action Recognition 
Action recognition, in the context of the proposed framework, is the process of con-
verting raw sensor data into interpretable learner actions. The process’s specifcs 
depend on the sensors available in the task environment and the actions that need to 
be recognized. In our previous work, we used computer vision algorithms for recog-
nition of these actions, as video data was available for all of the recorded activities, 
but the methods presented here are designed to be general, allowing for the applica-
tion of various analysis algorithms based on available data and desired outcomes. 
Design of the action recognition algorithms should be based on a combination of 
the available sensor data, the lowest observable levels of the cognitive task model, 
and the probabilistic constraints from the DiCoT analysis. For example, in the BC 
domain, we have previously demonstrated the importance of movement patterns in 
both the CTA and DiCoT analysis (Vatral et al., 2023a). In previous work, we have 
employed computer vision-based motion tracking algorithms to convert the raw 
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video data into meaningful soldier position and movement data (Vatral et al., 2022, 
2023a). 

Hierarchical Competency Modeling 
Next in the proposed framework is the hierarchical competency model, which 
represents the primary assessment step of the complete process. The hierarchical 
competency model is a structured model for providing an assessment of learner com-
petency at multiple levels of abstraction. The structure of the competency model 
mirrors that of the cognitive task model, sharing many of its high-level components. 
Since these concepts are already domain-general in the CTA model, they require 
little transformation to convert them to parallel transferable competencies. However, 
instead of having observable behaviors at the lowest level of the model, as in CTA, 
the hierarchical competency model has computable assessment metrics at the lowest 
level. The metrics, crafted through the previously described qualitative analysis as 
well as consultation with domain experts, are designed to be computable from the 
directly observable learner data and the associated action recognition schemes from 
the previous steps. For example, when evaluating the BC drill, one metric might 
evaluate whether the trainees are staying close to cover when they are not moving. 
Example hierarchical competency models for the two dismounted battle drills in our 
case study are shown in Figure 1.4. 

The parallel structure between the competency model and the cognitive task 
model allows us to take the event segmentation generated by the task model and 
generate the relevant assessment metrics for each segment depending on what task 
is being performed. These assessments for each segment are then propagated up the 
model to generate assessments of higher-level performance. To perform the propaga-
tion, we model the competency model as a dynamic Bayesian network, with directly 
computable low-level metrics representing the evidence variables, and higher-level 
competencies representing the unobservable variables conditionally linked to the 
evidence variables (Ben-Gal, 2008; Vatral et al., 2022). 

We represent each node in the HCM as a variable in the Bayes net. These vari-
ables are characterized by one of three values – below-expectation, at-expectation, 
or above-expectation. This classifcation aligns with the three-state learner mod-
els utilized in both the GIFT (Goldberg et al., 2021), where our system is imple-
mented, and the broader training literature (Cassella, 2010; Klein & Hoffman, 1992; 
Sottilare et al., 2017). Each competency node is assigned a prior probability distribu-
tion, refecting the initial likelihood of a trainee or team being in a specifc state for 
that competency. This mechanism enables the encapsulation of the initial experience 
level, with low experience indicated by a higher probability of below-expectation 
and, conversely, high experience indicated by a higher probability of above-expectation. 
For each link in the conceptual competency model, we establish a corresponding 
mathematical link in the Bayes net through conditional probability distributions. 
These distributions encode the relationship between two competencies. The perfor-
mance on a higher-level transferable competency is thus conditionally dependent 
on demonstrating profciency in low-level domain-specifc competencies. This setup 
allows us to infer the states of unobservable competencies based on the evidence of 
low-level measurement competencies and metrics using Bayesian inference. 
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FIGURE 1.4 Example hierarchical competency models with connected domain-specifc metrics for the Enter and Clear a Room (Left) and Break 
Contact (Right) dismounted battle drills. 
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13 A Theoretical Framework for Performance Analysis 

FIGURE 1.5 Illustration of the dynamic Bayes network update procedure. 

Figure 1.5 provides an illustration of this process by displaying the links among 
unobservable transferable competences, observable domain-specifc metrics, and 
updates across time. First, the prior-probability distributions are used to initialize the 
competency model. Subsequently, domain-specifc metrics obtained from a training 
exercise serve as evidence variables. Using Bayesian inference on the conditional 
probabilities and prior probabilities, the evidence at these domain-specifc nodes at 
time t is utilized to infer the states of the transferable competences during that train-
ing exercise. Then, the newly calculated states are used along with the transition 
probabilities to calculate the prior probabilities for inference at time t + 1 and the 
process repeats itself. Details of the probabilities used in this calculation for the case 
study are presented in the next sections. 

In our case study, we utilize a set of manually created conditional and transition 
probability models, as shown in Table 1.1, and initialize the prior probability at time 
t = 0 to 100% below-expectation. The hand-designed conditional probability model 
was designed with the general idea that, since mastery of one concept depends on 
mastery of the other, parent and child concepts in the H-ABC hierarchy are very 
likely in the same state. When a child has more than one parent, the conditional 
probability distribution of all of the parent nodes is multiplied to get the complete 
conditional probability distribution of the child. The general concept of the hand-
designed transition model is that, although it is highly unlikely that a trainee will 
move from one competency state to another following a single training event, the 

TABLE 1.1 
The Hand-Designed Probability Models Used in the H-ABC Bayesian 
Network for Our Case Study 

(a) Conditional Model (b) Transition Model 

Below At Above Below At Above 

Below 0.75 0.2 0.05 Below 0.95 0.05 0 

At 0.2 0.6 0.2 At 0 0.95 0.05 

Above 0.05 0.2 0.75 Above 0 0 1 
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likelihood of doing so increases if numerous training instances are completed con-
secutively, as is the case in our case study. 

FEEDBACK GENERATION 

Last, the output provided to the end user is the fnal element of the theoretical frame-
work. This research, at a broad level, aims to improve learning outcomes for stu-
dents and trainees in experiential learning environments. Thus, providing feedback 
to learners and instructors is of critical importance. Feedback is a crucial tool for 
learners to improve their performance, reduce errors, and enhance their self-effcacy 
and motivation. It offers guidance and information in response to performance or 
understanding, enabling learners to refne their educational goals, scaffold strate-
gies, and improve their self-effcacy (Adarkwah, 2021; Hattie & Timperley, 2007; 
Tan et al., 2020). Effective feedback has been shown to signifcantly impact learning 
outcomes, with effect sizes in systematic analyses ranging from moderate, d = 0.48, 
to moderately high, d = 0.79 (Hattie & Timperley, 2007; Wisniewski et al., 2020). 
However, not all feedback is equally effective, as it comes in various forms from 
various sources. 

AAR, also known as debriefng, is perhaps the most widely used approach to 
provide feedback in experiential learning and CBEL domains. AAR involves a com-
bination of feedback, refection, and discussion following a training event. This pro-
cess is a key component of Kolb’s cycle of experiential learning and has been widely 
adopted in experiential learning and CBEL domains (Abulebda et al., 2022; Keiser 
& Arthur Jr., 2021). AAR techniques date back to the mid-1970s, popularized by 
the US Army. Since then, AAR-style methods have gained popularity in military 
applications and other training domains, including healthcare (Villado & Arthur Jr., 
2013). Despite some variability in their development and implementation, the suc-
cess of AAR is well documented across various domains and implementations, with 
meta-analyses reporting effect sizes of at least d = 0.67 and up to d = 0.92 (Keiser & 
Arthur Jr., 2022; Tannenbaum & Cerasoli, 2013). 

The basic structure of an AAR is a three-phase process: (1) Reaction/Description, 
(2) Understanding/Analysis, and (3) Application/Summary (Abulebda et al., 2022). 
In the reaction/description phase, trainees are given the opportunity to diffuse and 
decompress from the training event, focusing on their feelings and the basic facts 
of events. This phase is considered important for psychological safety and prepares 
trainees for the rest of the debriefng (Twigg, 2020). In the understanding/analysis 
phase, instructors and trainees discuss the details of the training event, comparing 
what happened to what should have happened in ideal circumstances. Evidence sug-
gests that discussions should focus on both successes of the trainees and areas for 
improvement. The inclusion of objective performance records, such as video and 
audio recordings, also improves the effcacy of the AAR (Keiser & Arthur Jr., 2021; 
Villado & Arthur Jr., 2013). In the application/summary phase, discussions focus on 
generalizing knowledge and applying lessons from the current learning experience 
to the future. This phase of AAR mirrors the fnal phase of Kolb’s experiential learn-
ing model, allowing trainees to generalize what they have learned and improve their 
longitudinal performance. 
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Under the proposed framework of this chapter, the feedback generated by our 
algorithmic techniques is designed to primarily support the understanding/analy-
sis phase of AAR. Data dashboards are used to present the generated feedback to 
stakeholders in a visual and interpretable way. The concept is to provide users with 
data and insights produced by the system in an annotated format so they can quickly 
review recorded performance data, understand how the underlying algorithms gen-
erate their specifc recommendations, and understand how the generated feedback 
may be helpful in enhancing performance. While each implementation of the feed-
back mechanisms in the proposed framework will differ depending on the specifc 
learning environment and its goals, three fundamental principles remain consistent 
in the design of each system: (1) feedback should be objective and data-driven, (2) 
users should understand how and why feedback was generated, and (3) feedback 
should supplement and assist traditional instructors, not replace them. 

In our case study, we facilitate the feedback generation using the Gamemaster 
interface in the GIFT, whether our case study system was implemented (Goldberg 
et al., 2021). The Gamemaster in GIFT is an interface that allows users to review 
their performance on both current and previous training tasks. In our work, we have 
expanded the functionality of the Gamemaster interface to provide the user with two 
additional feedback components. First, we extended Gamemaster to display addi-
tional performance metrics displayed side-by-side with video that helps to demon-
strate how these metrics were computed. This sort of annotated video timeline not 
only allows instructors and trainees to quickly move around the captured video to 
review specifc segments corresponding to areas for improvement, but also allows 
for an in-depth review of annotated video evidence to understand how the algorith-
mic assessments come to their conclusions. Second, we expanded the Gamemaster 
interface to show a longitudinal graphical representation of trainee performance. 
Since the evaluations in the framework use a multilevel competency model, we can 
plot the performance of the trainees at each level of the model longitudinally to help 
give students and instructors an understanding of how they are progressing at mul-
tiple levels of abstraction. An example of this longitudinal performance plot is shown 
in Figure 1.6. In previous studies, we have found that these hierarchical performance 
visualizations can reveal signifcant insights into learner performance, including 
identifying concrete areas for improvement, illustrating task learning saturation to 
identify when training exercises should be modifed, and examining how skills are 
transferring between multiple similar exercises (Vatral et al., 2022, 2023a). 

CONCLUSIONS 

In this study, we proposed a comprehensive theoretical framework that makes use 
of multimodal data from competency-based experiential training environments to 
analyze learner performance at various levels of abstraction. The framework offers 
a complete analytical methodology to take raw learner data and construct compu-
tational models that provide learner competence assessments and learner feedback. 
These models are grounded in strong theoretical foundations of CBEL, CTA, DiCoT, 
and MMLA. Throughout the chapter, we demonstrated the framework using a real-
world scenario of fre teams of soldiers performing dismounted battle drill exercises. 
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FIGURE 1.6 Visualization of performance progression across each level of the hierarchical competency model over the course of the entire day of 
training. 
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Future work should focus on applying this same computational framework to other 
cases besides Army battle drills, which would further validate the framework’s eff-
cacy. In addition, continuing work will focus on building out open-source extensible 
libraries that implement various algorithms of this framework that would be used 
by every implementation. These open-source implementations would allow for easy 
widespread adoption of the framework in a variety of training domains. In addi-
tion, by using a common toolset, these implementations could become interoperable 
with one another, potentially allowing for the construction of a more comprehen-
sive learner model that builds from data from several unique training exercises. We 
anticipate that, with further development, this framework will serve as a thorough 
analytical procedure for a broad range of training areas and be crucial to the stan-
dardization of evaluation and feedback in competency-based experiential learning 
settings. 

REFERENCES 

Abulebda, K., Auerbach, M., & Limaiem, F. (2022). Debriefng Techniques Utilized in 
Medical Simulation. Treasure Island, FL: StatPearls. 

Adarkwah, M. A. (2021). The power of assessment feedback in teaching and learning: A nar-
rative review and synthesis of the literature. SN Social Sciences, 1(3). 

Allen, J. (2005). Grades as valid measures of academic achievement of classroom learning. The 
Clearing House: A Journal of Educational Strategies, Issues and Ideas, 78(5), 218–223. 

Ben-Gal, I. (2008). Bayesian Networks. In F. Ruggeri, R. S. Kenett, & F. W. Faltin (Eds.), 
Encyclopedia of Statistics in Quality and Reliability. Hoboken, NJ, USA: John Wiley 
& Sons Ltd. https://doi.org/10.1002/9780470061572.eqr089 

Bergsteiner, H., Avery, G., & Neumann, R. (2010). Kolb’s experiential learning model: 
Critique from a modeling perspective. Studies in Continuing Education, 32(1), 29–46. 

Biggs, J., & Tang, C. (2007). Teaching for Quality Learning at University. Open University Press. 
Biswas, G., Rajendran, R., Mohammed, N., Goldberg, B. S., Sottilare, R. A., Brawner, K., & 

Hoffman, M. (2019). Multilevel learner modeling in training environments for complex 
decision making. IEEE Transactions on Learning Technologies, 13(1), 172–185. 

Blandford, A., & Furniss, D. (2006). DiCoT: A Methodology for Applying Distributed 
Cognition to the Design of Teamworking Systems. In Interactive Systems. Design, 
Specifcation, and Verifcation (pp. 26–38). Berlin, Heidelberg: Springer. 

Cannon-Bowers, J., Bowers, C., Stout, R., Ricci, K., & Hildabrand, A. (2013). Using cog-
nitive task analysis to develop simulation-based training for medical tasks. Military 
Medicine, 178, 15–21. 

Carraccio, C., Wolfsthal, S., Englander, R., Ferentz, K., & Martin, C. (2002). Shifting para-
digms: From Flexner to competencies. Academic Medicine, 77(5), 361–367. 

Cassella, R. A. (2010). Leader development by design. ITEA Journal, 31, 280–283. 
Cooke, M., Irby, D., & O’Brien, B. (2010). Educating Physicians: A Call for Reform of 

Medical School and Residency (Vol. 16). San Francisco, CA: John Wiley & Sons. 
Emara, M., Hutchins, N. M., Grover, S., Snyder, C., & Biswas, G. (2021). Examining student 

regulation of collaborative, computational, problem-solving processes in open-ended 
learning environments. Journal of Learning Analytics, 8(1), 49–74. 

Galliers, J., Wilson, S., & Fone, J. (2007). A method for determining information fow break-
down in clinical systems. International Journal of Medical Informatics, 76, S113–S121. 

Gervais, J. (2016). The operational defnition of competency-based education. The Journal of 
Competency-Based Education, 1(2), 98–106. 

https://doi.org/10.1002/9780470061572.eqr089


 

 

 

 

 

 

 

  

 

 

18 AI and Gamifcation Technologies for Complex Work 

Goldberg, B., Owens, K., Hellman, K., Robson, R., Blake-Plock, S., Hoffman, M., & Gupton, 
K. (2021). Forging Competency and Profciency through the Synthetic Training 
Environment with an Experiential Learning for Readiness Strategy. In Proceedings of 
the 2021 I/ITSEC. Orlando, FL. 

Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 
77(1), 81–112. 

Hazlehurst, B., Gorman, P., & McMullen, C. (2008). Distributed cognition: An alterna-
tive model of cognition for medical informatics. International Journal of Medical 
Informatics, 77(4), 226–234. 

Hoessler, C., & Godden, L. (2021). Outcome-Based Experiential Learning: Let's Talk 
About, Design For, and Inform Teaching, Learning, and Career Development. Higher 
Education and Beyond. 

Hutchins, E. (2000). Distributed Cognition. In J. D. Wright (Ed.), International Encyclopedia 
of the Social and Behavioral Sciences (p. 138). Amsterdam: Elsevier Science. 

Johnstone, S., & Soares, L. (2014). Principles for developing competency-based education 
programs. Change: The Magazine of Higher Learning, 46(2), 12–19. 

Keenan, D. (2013). Experiential learning and outcome-based education: A bridge too far 
within the current education and training paradigm. Journal of Applied Learning 
Technology, 3(2), 13–19. 

Keiser, N., & Arthur Jr., W. (2021). A meta-analysis of the effectiveness of the after-action 
review (or debrief) and factors that infuence its effectiveness. Journal of Applied 
Psychology, 106(7), 1007–1032. 

Keiser, N., & Arthur Jr., W. (2022). A meta-analysis of task and training characteristics 
that contribute to or attenuate the effectiveness of the after-action review (or debrief). 
Journal of Business and Psychology, 37(5), 953–976. 

Kinnebrew, J. S., Segedy, J. R., & Biswas, G. (2017). Integrating model-driven and data-
driven techniques for analyzing learning behaviors in open-ended learning environ-
ments. IEEE Transactions on Learning Technologies, 10(2), 140–153. 

Klein, G. A., & Hoffman, R. R. (1992). Seeing the Invisible: Perceptual-Cognitive Aspects of 
Expertise. In M. Rabinowitz (Ed.), Cognitive Science Foundations of Instruction (pp. 
203–226). Mahwah, NJ: Erlbaum. 

Kolb, D. A. (2014). Experiential Learning: Experience as the Source of Learning and 
Development. Englewood Cliffs, NJ: FT Press. 

McCarthy, J. (2017). Enhancing feedback in higher education: Students’ attitudes towards 
online and in-class formative assessment feedback models. Active Learning in Higher 
Education, 18(2), 127–141. 

Morcke, A. M., Dornan, T., & Eika, B. (2013). Outcome (competency) based education: An 
exploration of its origins, theoretical basis, and empirical evidence. Advances in Health 
Sciences Education, 18, 851–863. 

Morris, T. H. (2020). Experiential learning–a systematic review and revision of Kolb’s model. 
Interactive Learning Environments, 28(8), 1064–1077. 

Naranjo, N. R. (2022). Criticisms of the Competency-Based Education (CBE) Approach. In 
Opačić A (ed), Social Work in the Frame of a Professional Competencies Approach 
(pp. 21–35). Cham: Springer International Publishing. 

Owens, K., & Goldberg, B. (2022). Competency-based experiential expertise. In Design 
Recommendations for Intelligent Tutoring Systems, Volume 9-Competency-Based 
Scenario Design, 19. 

Reynolds, C. R. (1981). Neuropsychological assessment and the habilitation of learning: 
Considerations in the search for the aptitude x treatment interaction. School Psychology 
Review, 10(3), 343–349. 

Rowan, B. (2016). Defning Competencies and Outlining Assessment Strategies for 
Competency Based Education Programs. Pearson Education. 



  

  

          

 

 

  

   

 

19 A Theoretical Framework for Performance Analysis 

Rybing, J. (2018). Studying Simulations with Distributed Cognition (Vol. 1913) Linkoping 
University Electronic Press. 

Schraagen, J. M., Chipman, S. F., & Shalin, V. L. (Eds.). (2000). Cognitive Task Analysis (392 
pp). Mahwah, NJ: Psychology Press. 

Sottilare, R. A., Brawner, K. W., Sinatra, A. M., & Johnston, J. H. (2017). An updated concept 
for a generalized intelligent framework for tutoring (GIFT). GIFTtutoring. org, 1–19. 

Stanton, N. (2014). Representing distributed cognition in complex systems: How a submarine 
returns to periscope depth. Ergonomics, 57(3), 403–418. 

Stenhouse, L. (1975). An Introduction to Curriculum Research and Development. Heinemann 
Publishers, London, UK. 

Swaby, L., Shu, P., Hind, D., & Sutherland, K. (2022). The use of cognitive task analysis 
in clinical and health services research — A systematic review. Pilot and Feasibility 
Studies, 8(1), 57. 

Tan, F., Whipp, P., Gagne, M., & Van Quaquebeke, N. (2020). Expert teacher perceptions of 
two-way feedback interaction. Teaching and Teacher Education, 87, 102930. 

Tannenbaum, S., & Cerasoli, C. (2013). Do team and individual debriefs enhance perfor-
mance? A meta-analysis. Human Factors, 55(1), 231–245. 

Twigg, S. (2020). Clinical event debriefng: A review of approaches and objectives. Current 
Opinion in Pediatrics, 32(3), 337–342. 

Vatral, C., Biswas, G., & Goldberg, B. (2023b). A theoretical framework for multimodal 
learner modeling and performance analysis in experiential learning environments. 
Workshop on Artifcial Intelligence in Support of Guided Experiential Learning, Held 
in conjunction with the International Conference on Artifcial Intelligence in Education 
(AIED). 07 July 2023, Tokyo, Japan (CEUR-WS.org). 

Vatral, C., Mohammed, N., Biswas, G., & Goldberg, B. S. (2022). Multimodal Learning 
Analytics Using Hierarchical Models for Analyzing Team Performance. In Proceedings 
of the 2022 Interservice/Industry Training, Simulation and Education Conference 
(I/ITSEC). National Training and Simulation Association. 

Vatral, C., Mohammed, N., Biswas, G., & Goldberg, B. S. (2023a). A Framework for 
Performance Assessment across Multiple Training Scenarios Using Hierarchical 
Bayesian Competency Models. Under Review for Proceedings of the 2023 Interservice/ 
Industry Training, Simulation and Education Conference (I/ITSEC). National Training 
and Simulation Association (Under Review). 

Villado, A., & Arthur Jr., W. (2013). The comparative effect of subjective and objective after-
action reviews on team performance on a complex task. Journal of Applied Psychology, 
98(3), 514–528. 

Wisniewski, B., Zierer, K., & Hattie, J. (2020). The power of feedback revisited: A meta-
analysis of educational feedback research. Frontiers in Psychology, 10, 3087. 

Wright, P. C., Fields, R. E., & Harrison, M. D. (2000). Analyzing human-computer interaction 
as distributed cognition: The resources model. Human–Computer Interaction, 15(1), 1–41. 

York, T., Gibson, C., & Rankin, S. (2015). Defning and measuring academic success. 
Practical Assessment, Research, and Evaluation, 20(1), 5. 

Zhang, J., Yang, K., & Stiefelhagen, R. (2021, September). ISSAFE: Improving semantic 
segmentation in accidents by fusing event-based data. In 2021 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS) (pp. 1132–1139). IEEE. 

https://CEUR-WS.org


20 DOI: 10.1201/9781032701639-2  

 
 

 
 

 
 
 

 
 
 
 
 
 

 
 
 
 
 

 
 
 

 

Instruction Intervention 2 
in Game-Based 
Assessment of 
Unmanned Systems 
Operator Performance 

James C. Ferraro and Phillip M. Mangos 

INTRODUCTION 

Modern military aircraft systems are becoming increasingly autonomous, with 
more missions and responsibilities assigned to unmanned aerial systems (UAS; 
Mouloua et al., 2001). Deploying unmanned aircraft provides a number of tactical 
advantages, including an increase in combat effciency and safety for aviation per-
sonnel. UAS operators encounter challenges related to workload, situation aware-
ness, and fatigue that can vary across task domains and between aircraft platforms 
(e.g., MQ-9, MQ-25, and RQ-21). The advent of automated, unmanned systems has 
generated a host of human factors challenges, given the increased supervisory role 
of the human operator (see Gilson et al., 1998; Mouloua et al., 2010). Maintaining 
sustained attention is of primary concern, as automation has fundamentally changed 
certain aspects of aerial operations, particularly in the domain of UAS. Mishaps 
have been attributed to a failure of maintaining sustained attention during supervi-
sory tasks of automated systems. During the period of fscal years 1996–2006, there 
were 64 reported incidents with the long-haul MQ-1 Predator UAS. These include 
27 Class A (greater than $1 million in damage or fatality), 3 Class B (greater than 
$200,000 in damage), and 34 Class C (greater than $20,000 in damage) incidents 
(Arrabito et al., 2010). Of the reported Class A, B, and C incidents, 62.5% were 
attributed to human error, specifcally lack of situational awareness, as a major con-
tributing factor. Maintaining vigilance is vital to the control of UAS, as the failure 
to sustain attention for an extended time period could increase the likelihood that 
critical signs (e.g., system malfunctions and enemy targets) are not detected in time 
or missed completely. 

Long-haul missions performed by UAS operators ultimately pose a signifcant 
challenge for operators maintaining vigilance. Research fndings support the notion 
that the vigilance decrement is not necessarily due to mindlessness (boredom), but 
rather a limitation of effortful attention (Grier et al., 2003). Vigilance-associated 
tasks extend beyond boredom-inducing, simple work assignments. Research on 
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behavioral and neurological measures of stress experienced during vigilance tasks 
strongly supports the notion that these tasks are exacting, capacity-draining assign-
ments that impose considerable strain on cognitive resources (Warm et al., 2008). 
Ultimately, vigilance decrement occurs when operators must rapidly and temporar-
ily transition from automated information processing (visual monitoring of UAS 
operations) to controlled information processing (e.g., response to critical system 
malfunction or identifcation of hostile activity). 

Many UAS operators have transitioned from manned aviation positions to 
capitalize on the assumed overlap in skillsets between manned and unmanned 
aircraft operations. However, the gap in knowledge and skills for UAS operations 
from manned aviation is far greater than it may initially appear (Ferraro et al., 
2017; Mouloua et al., 2019). In order to combat the performance risks, there is a 
need to enhance the development of attention control and other cognitive skills 
in UAS operators. Research strongly supports that a critical mechanism in the 
operator’s ability to combat vigilance decrement is associated with their adapt-
ability, in order to strategically allocate attentional resources to task components 
in response to novel, unpredictable, or changing task demands. Strategic attention 
control skills enable one to fexibly and effciently distribute limited attentional 
resources in response to dynamic, unpredictable task demands, coordinate the 
execution of different skills, and regulate performance (Mouloua et al., 2003; 
Scott & Doverspike, 2005). 

SIMULATION TRAINING FOR UAS OPERATORS 

There is a push from the Department of Defense (DOD) to implement simulation-
based training systems that adequately address challenges to UAS operator perfor-
mance. The fexibility of simulation-based training and assessment technologies 
allows for an adaptable environment to rehearse mission-critical skills and identify 
pain points in operator performance. The ability to accurately measure—in real-
time—a person’s current attention control skill level provides the basis for the devel-
opment of adaptive training interventions designed to customize the task’s inherent 
attentional challenges. Additionally, a number of relatively stable individual differ-
ences have been identifed as potential predictors of attention control skill develop-
ment. The implication of the attention control trait concept for adaptive training is 
the opportunity to optimize training based on measurement of the trainee’s indi-
vidual trait confguration. 

The DOD solicited development of “Stealth Adapt”, a game-based mission 
rehearsal platform to measure and track user performance in several key areas of a 
UAS search-and-rescue (SAR) mission (Mangos, 2016). The technology was devel-
oped as a closed-loop adaptive training system, disguised as a fun and engaging 
game, while maintaining serious learning and adaptive training elements specifcally 
designed to foster the development of essential cognitive skills for UAS operators. 

Described within this chapter is the use of the STEALTH ADAPT training and 
assessment platform to test several methods of training to support user decision-
making in a game-based training environment. The effort described below aimed 
to evaluate the effcacy of several instructional interventions aimed at increasing 
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the training effectiveness of game-based platforms for training UAS operators. It 
also attempted to examine how presenting users with progressively more diffcult 
scenarios helps to train essential skills and improve performance, as compared to 
random assignment of scenarios. As simulation and game-based training technolo-
gies proliferate modern military training curricula, it presents opportunities to intro-
duce adaptable methods of support user performance and optimize their learning 
curve. The development and evaluation of simulated game-based training systems 
for unmanned systems operators can help mitigate human factors issues related to 
vigilance, workload, and situation awareness (Mouloua et al., 2019). Proper perfor-
mance assessment and training methodology could signifcantly reduce instances of 
critical system failures, and the costs associated with them. 

GAME-BASED TRAINING SOFTWARE 

Adaptive Immersion’s game-based STEALTH ADAPT software simulates an SAR 
mission, during which operators prioritize downed allies and plan a path to rescue as 
many as possible. The gamifed SAR mission environment was built based on cogni-
tive walkthroughs of the task domain and essential tasks with subject matter experts 
(SMEs), a realistic landscape that contained scattered allies in need of rescue. The 
virtual environments include detailed physical landscapes, frst-person camera per-
spectives from the UAS, and models of various aircraft. This is intended to highlight 
the realistic representations of the environment and assets while implementing intui-
tive, user-tested gameplay into traditional UAS tasking. 

GAME ENVIRONMENT AND GAMEPLAY 

Each trial begins with a mission planning phase that tasks operators with choos-
ing their path to each waypoint based on certain criteria: Survivability, Proximity 
to Weapon Engagement Zone (WEZ), and Time Until Resources are Depleted 
(Figure 2.1). If a waypoint’s Survivability is below 15%, it should be considered a pri-
ority. Similarly, if a waypoint is within three kilometers of a WEZ (hostile territory 
that will damage the aircraft), it should be considered a priority. Finally, if the Time 
Until Resources are Depleted is below 45 seconds, that waypoint should be consid-
ered a priority. If one waypoint met all three criteria, it should be prioritized above 
all others, followed by a waypoint meeting two of three, and so on. This information 
must be considered in conjunction with the arrangement of the friendly targets and 
WEZs to ensure a safe and effcient execution of the task. 

After confrmation of the path to rescue each waypoint, the UAS begins autono-
mous fight to the frst waypoint. A mini-map is provided to give operators indica-
tors of the location of each waypoint and WEZ, as well as the orientation of the 
aircraft relative to the direction of North. This mini-map enables operators to alter 
their path, selecting waypoints not intended to be next in the sequence. This may be 
done to avoid WEZs, or to optimize fight path to conserve resources. Additionally, 
the critical information about each waypoint may change over time, at which point 
the operator must identify how the optimal path has changed and reconsider their 
current trajectory. The aircraft runs on fuel that drains at a constant rate during 



 
 

 

23 Game-Based Assessment of Unmanned Systems Operator Performance 

FIGURE 2.1 Mission planning gameplay interface. 

fight, with a battery acting as a backup. Operators have the ability to increase the 
speed of the aircraft which, in turn, increases the burn-rate of the fuel and battery. 
Once fuel and battery are depleted, the trial is over. 

Each waypoint is identifed by a three-fgure alphanumeric “name”, or ID, to dis-
tinguish them. Authentication codes are required to collect and rescue downed allies 
at each waypoint. These fve-fgure alphanumeric codes are unique to each waypoint 
and are presented visually in a dialogue box presented to operators among several 
other, unrelated, series of messages. Operators are responsible for identifying and 
recalling this code to successfully pick up an ally. 

The aircraft fies autonomously, meaning the operator did not have manual con-
trol over its altitude and fight path. During the session, the aircraft and operator 
will experience a loss of link, and the operator will be tasked with recalling cer-
tain in-fight conditions. These conditions included the in-fight view of the environ-
ment, orientation of the mini-map, name of next waypoint in the fight sequence, and 
authentication code for the next waypoint. A list of primary and secondary tasks is 
provided in Table 2.1. 

Within the main display, users have access to a frst-person view of the environ-
ment in front of the UAS (Figure 2.2). A mini-map is available at the top left that 
allows players to click on waypoints to change the path of the UAS. Enemy terri-
tory is designated as red sections on the ground, informing players of where they 
may take damage and letting them account for hazards during their travels. UAS 
resources such as health, fuel, and battery are provided adjacent to a chat window 
through which users receive critical information about each waypoint. 

It was within this simulated environment that the training effectiveness evalua-
tion took place. 



 

24 AI and Gamifcation Technologies for Complex Work 

TABLE 2.1 
Search-and-Rescue Primary and Secondary Task Descriptions 

SAR Tasks and Description 

Primary Task Description 

Rescue Downed Allies Participants scored on the percentage of allies they 
are able to successfully identify and rescue 

Secondary Tasks Description 
Waypoint Prioritization Participants scored on their ability to properly plan 

their path in accordance with the rules of 
engagement (Mission Planning) 

Loss of Link Recall Participants scored on their ability to recall in-fight 
conditions after experiencing a lost connection to 
the aircraft 

Resource Management Participants scored on their ability to conserve fuel, 
battery, and health while completing their mission 

EXPERIMENTAL DESIGN AND PROCEDURES 

The primary objective of the training effectiveness evaluation was to objectively 
evaluate the potential for instructional intervention techniques within the game-
based training system to enhance operator performance in the real-world mission 
environment. A critical requirement for training effectiveness research is to incorpo-
rate established experimental controls and procedures to provide a solid foundation 

FIGURE 2.2 Mission execution gameplay interface. 
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for both internal and external validities of the research. One such control relates to 
statistical power and ensuring adequate sample size to ensure the stability of the 
statistical parameters of the parameters of the statistical model when the data are 
analyzed, ensuring appropriate inferences can be made about both reserved results, 
the integrity of the experimental design, and the potential for the observed patterns 
to translate to real-world performance improvement. 

UAS operators are currently in high demand, and the availability of existing oper-
ators represents a limiting factor in the experimental design, given their extremely 
limited supply. A statistical power analysis was conducted to anticipate the required 
sample size for each of the experimental conditions. Assuming two independent 
variables, with two to three levels within each of the independent variables, the sta-
tistical power analysis identifed a requirement for at least 15–20 observations for 
each parameter included in the statistical analytic model. Inclusion of additional 
parameters beyond the main experimental effects, such as interaction and covariate 
effects, increases the required sample size to achieve the criterion level of statistical 
power accordingly, with each additional parameter included. The inclusion of the 
two main effects, one interaction effect, up to fve covariates (not crossed with each 
other or the main effects to create higher-order interaction effects) would result in the 
inclusion of at least eight parameters in the statistical model. Assuming no data loss, 
this would create a sample size requirement of at least 120–160 observations in total. 
In the real world, with data loss being a pervasive threat to the experimental design 
and statistical model integrity, one must anticipate at least 20–25% data loss for vari-
ous reasons, including missing or incomplete data, careless, responding, inadequate 
variability in the observed performance data, and a host of other variables that could 
affect data quality even after extensive prescreening procedures. This placed the 
overall sample size requirement in the 150–200 observations range. 

SUBJECT SCREENING AND SAMPLING 

The scarcity of mission-ready air vehicle operators (AVOs) would render an experi-
mental data collection employing these individuals as the primary participants 
extremely diffcult. Our solution was to recruit a sample of individuals whose demo-
graphic characteristics, biographical history, and key experiential factors (e.g., game 
performance) closely resemble those of the target AVO sample. We recruited a large 
sample of experienced and professional gamers with substantial long-term history, of 
playing games of a nature and complexity similar to that of the STEALTH ADAPT 
system. These individuals were recruited based on their performance on a number 
of sequential prescreens that tested both their gaming knowledge and experience, 
including long-term gaming history, and regular/weekly gaming habits, frequency, 
and playing duration. Additionally, these individuals were matched to the prototype 
military unmanned pilot demographic profle for key demographic variables. 

The frst step in the prescreening process was a gaming knowledge test assisting 
familiarity with and knowledge of various gaming concepts and symbology. This 
step also included questions assessing long-term gaming experience history, types/ 
genres of games played on a regular basis, and daily and weekly game performance 
duration, and frequency. A number of demographic variables were also captured 
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at this initial stage of the prescreening process. In addition to basic demographic 
characteristics (including race, gender, age, education level, academic performance, 
work history, college major, and employment status, among others), information on 
past and present military experience was assessed for each participant. This stage 
of the prescreening employed a compensatory approach where either perfect per-
formance on the knowledge portion of the assessment or near-perfect performance 
on the assessment combined with critical military, experiential, or other biographi-
cal history factors were used to establish a prescreening passing score for potential 
inclusion within the next phase of the process. The second phase of the prescreening 
process included screening variables for factors that could infuence the quality and 
security of the remote gameplay experience planned for the virtual data collection. 
This included measured Internet upload and download speed, United States location, 
and geographic proximity to the servers on which the game was hosted. These frst 
two waves of prescreens were designed to isolate the population of potential individ-
uals eligible for participation in the study. A sample of participants was then drawn 
from this population and randomly assigned to the six experimental conditions. The 
fnal wave of prescreens relates only to the integrity of the data as evidence of the 
participants careful and conscientious response process once they were engaged in 
the study. This fnal set of prescreens includes a number of variables useful for evalu-
ating data quality and conscientious response patterns. These include percentage of 
missing data on both the initial training trials and follow-up transfer trials, intra-
individual variability on both the core game performance dependent variables and 
knowledge, self-effcacy, and perceived task diffculty surveys; univariate and mul-
tivariate outlier status on any of the primary game performance variables; illogical 
responses on parallel items included in the surveys assessing player attributes and 
motivational states; and manual review of individual response vectors for evidence 
of inconsistent, illogical, or careless response patterns. 

A total of 2,815 participants were recruited for inclusion within the frst wave of 
prescreens. Of these, 1,671 passed the frst wave of prescreens, refecting a pass rate 
of 59.4%. The next wave of prescreens resulted in an available sample of 447 (26.8%). 
This includes individuals who both passed the second wave of prescreens and self-
selected into the study. The fnal wave of screening and self-selection resulted in a 
fnal sample of 179 total participants (40.0%) who completed the entire set of train-
ing trials (number of trials varies depending on the experimental condition to which 
they were assigned), of whom 158 completed the entire set of follow-up transfer test 
trials (88.7%). A summary of the total sample size by experimental conditions is 
provided in the table below. 

A number of incentives were employed to encourage high-quality performance 
among the Amazon Mechanical Turk workers recruited for participation in the 
study. Participants were paid a base HIT payment of $25 for successful completion 
of the initial training HIT. Additionally, the highest performer within each daily 
HIT session was given a bonus of $25. Workers who completed the initial session 
were offered $30 to participate in the subsequent one-week follow-up HIT to com-
plete the transfer test trials. Finally, specifc instructions were included within each 
HIT page to ensure conscientious adherence to all instructions and consistently high 
effort throughout the entire set of trials. This included knowledge checks within the 
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initial instructions that required participants to accurately different elements of the 
display to demonstrate the familiarity of being able to move ahead with the actual 
training trials. 

INSTRUCTION INTERVENTIONS AND DESIGN 

To begin the study, participants were randomly assigned to one of two Instructional 
Strategy conditions. In one of these conditions, participants receive pre-mission 
guidance in the form of an instructional intervention, while in the other they did 
not. This intervention provided participants with additional hints to help with mis-
sion planning. Participants were also assigned to one of three training intervention 
conditions. In one condition, training scenarios were presented to participants in a 
randomized order. Each scenario, scored with a diffculty rating determined by mis-
sion conditions, was uniquely rated 1 through 10. In another training condition, sce-
narios were presented to get progressively more diffcult as the participant advances. 
This sequence was designed specifcally to mimic the adaptive training algorithm 
developed for STEALTH ADAPT. In a fnal training condition, the participant did 
not receive any training scenarios. The six conditions are outlined in Table 2.2. 

Participants began a session with a series of surveys. The frst survey gathered 
general demographic information (age, gender, education level, etc.) as well as infor-
mation regarding participants’ experience playing videogames. A self-effcacy scale 
was provided to assess participants’ attitudes toward their capabilities in the tasks 
required in the STEALTH ADAPT missions (e.g., task prioritization). Finally, the 
Dundee Stress State Questionnaire (DSSQ) was administered to assess pre-task 
engagement, distress, and worry. 

Participants in the Randomized and Progressive Training conditions experi-
enced ten training trials following the pre-trial survey. These trials were presented 
in an order determined by their Training condition. Depending on their Instruction 
Strategy condition, they either received the instructional intervention or not. They 
then completed two experimental test trials. These fnal trials were the same for 
all participants, regardless of condition. Participants in the No Training conditions 
advanced from the pre-task surveys directly to the two experimental test trials. 
Following these two trials, participants completed a post-task DSSQ. 

There was a one-week hiatus between sessions, and participants were brought back 
to complete additional experimental trials. During this second session, participants 

TABLE 2.2 
Conditions of the Training Effectiveness Evaluation Study 
Group 1 Group 2 Group 3 
Randomized Training/ Progressive Training/ No Training/ 
No Instruction Intervention No Instruction Intervention No Instruction Intervention 

Group 4 Group 5 Group 6 
Randomized Training/ Progressive Training/ No Training/ 
Instruction Intervention Instruction Intervention Instruction Intervention 
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FIGURE 2.3 Research study design sequence. 

once again began by completing the DSSQ. Additionally, prior to the additional trials 
intended to assess transfer of training, participants completed a knowledge assess-
ment to establish what information regarding the interface and rules of engagement 
they retained from their training session. 

All participants then completed the same four fnal transfer trials. These transfer 
trials were designed to mimic real-world operational conditions, with a signifcant 
increase in diffculty, and incorporating unanticipated events (e.g., Loss of Link and 
authentication code decryption requirement) that were never experienced during 
training or the instructional sessions. This is consistent with the notion of “truly sur-
prising events”, where the ultimate indicator of transfer of training is effective per-
formance under real-world conditions never experienced during training. Two of the 
transfer trials were the same as the fnal two experimental test trials as the previous 
session, and two were unique and never seen previously by participants. These tri-
als were then followed by the DSSQ post-test and a fnal assessment of participants’ 
self-effcacy. This procedure is shown in Figure 2.3. 

ASSESSMENT OF TRAINING INTERVENTION IMPACTS 

The training effectiveness study was conducted over the course of six weeks in 
November and December 2021. The 179 participants who progressed through three 
stages of prescreens completed their initial training trials during the frst session, 
and 158 of these completed the second set of transfer test trials during the second 
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TABLE 2.3 
Participant Pool Breakdown 

Condition Sample Size—Training Sample Size—Transfer 
Instruction 94 81 

Random Training 36 29 

Progressive Training 32 27 

No Training 26 25 

No Instruction 85 77 

Random Training 26 23 

Progressive Training 29 27 

No Training 30 27 

Total 179 158 

session. A breakdown of the number of participants in each experimental group is 
provided in Table 2.3. 

Key demographic and cognitive state variables were assessed, including gender 
(65.54% Male, 34.46% Female), age (M = 35.70, SD = 7.94), previous night’s sleep 
hours (M = 7.08, SD = 1.18), color vision (100% normal color vision), education level 
(100% high school level or above, 51.96% Bachelor’s degree or above), prior military 
and fight experience (8.00%), and academic GPA (76.54% above 3.0). 

Performance in both the training and transfer conditions was assessed using math-
ematical modeling techniques to produce a quantitative score for each performance 
dimension, at the level of each individual training or transfer trial, and then normal-
ized across the entire sample within the individual trial to produce a standardized 
score for each variable with a mean of 0 and standard deviation of 1. 

It was expected that the Progressive Training intervention would prove benefcial 
and result in higher scores across performance measures in the transfer trials. It 
was also expected to result in better performance in knowledge assessment items 
and higher self-effcacy. The presence of the instructional intervention (Instruction 
condition) was also expected to improve performance, knowledge, and self-effcacy. 

STATISTICAL ANALYSIS AND RESULTS 

Among the multitude of individual performance variables available for use, we ana-
lyzed and reduced a set of candidate metrics determined to be representative of the 
players’ accuracy, effciency, and effectiveness, and that were relatively oblique met-
rics (i.e., having low correlations with each other), to provide a comprehensive and 
nonredundant picture of the players’ overall performance both during training and 
transfer. 

The shortlisted performance variables considered for further analysis are included 
in Table 2.4. 

A series of growth curve analyses were run on the training scenario data to exam-
ine participants’ performance trends over time. The area beneath the growth curve 
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TABLE 2.4 
Measured Performance Variables and 
Corresponding Phase of Measurement 

Performance Metric Phase of Measurement 
Situation Awareness Circumplex Training 

Situation Awareness Circumplex Transfer 

Average Speed Improvement Training 

Average Idle Time Improvement Training 

Average Attempts per Waypoint Training 

Average Prioritization Score Training 

Average Non-Idle Speed Training 

Average Prioritization Score Transfer 

Average Idle Time Transfer 

Average Attempts per Waypoint Transfer 

Knowledge Assessment Transfer 

Self-Effcacy Training (1) 

Self-Effcacy Training (2) 

Self-Effcacy Transfer 

was estimated and then normalized to examine prior performance compared to the 
transfer trials to assess the cumulative level of improvement. The purpose of this 
analysis was to measure the error-corrected cumulative performance growth during 
training, refecting level and rate of change in initial skill acquisition. These per-
formance growth trajectories can then be used to predict both pre-retention (imme-
diate) transfer performance and post-retention transfer performance (i.e., after the 
one-week retention interval). 

A series of ANCOVA and regression analyses were performed to examine main 
effects or interaction effects present between conditions, particularly to the extent to 
which an IV may have affected performance between the initial test trials and the 
transfer trials. Demographic information and gaming experience were utilized as 
covariates. 

CORE PERFORMANCE VARIABLE SELECTION AND DIMENSION REDUCTION 

The STEALTH ADAPT training system was designed within a performance-
based measurement architecture, incorporating a wide variety of fne-grained 
performance metrics and mathematical models to capture the full spectrum of 
the player’s performance. These individual metrics can be observed within single 
time instances, ranging from within-session play time intervals (measured in sec-
onds) to performance within individual training or transfer trials, to individual 
growth patterns observed across the entire training study. The building blocks 
of this performance measurement strategy include individual metrics refecting 
the players observable performance vis-à-vis the game rules, scenario objectives, 
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and rules of engagement. These refect how accurately and effciently the player is 
operating the simulated UAS, the effciency with which they are burning consum-
able resources such as fuel and battery, the speed and effciency of navigating the 
mission environment, prioritization accuracy related to the pattern of rescuing the 
downed friendly forces, memory and data management for accomplishing critical 
mission objectives, situational awareness related to where the player is in their 
intended movement and actions at a given point in the mission, their knowledge 
of the rules of engagement, and their experienced stress and confdence levels in 
accomplishing the mission objectives. 

We evaluated the bivariate correlations among these candidate variables, and 
performed additional dimension reduction in the form of factor analyses to identify 
the most promising and relatively uncorrelated variables for inclusion as the court-
dependent variables in the training effectiveness study analysis (Table 2.5). 

Factor analysis was then performed, using principal axis factoring, with direct 
oblimin rotation of the factor solution (an oblique rotation technique allowing fac-
tor solutions to be correlated). This was designed to derive the reduced set of latent 
variables underlying the 14 candidate performance indicators, associate indicators 
with latent variables, and use these results to identify the most promising dependent 
variables for the core effectiveness evaluation analysis. The factor analysis derived 
three latent factors with eigenvalues greater than 1.00. The absolute values of the 
factor loadings ranged from 0.01 to 0.58, with on average 3 to 4 indicators loading on 
to each of the derived factors. 

TABLE 2.5
Candidate Variable Correlation Values
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GROWTH CURVE PREDICTION 

One critical aspect of training performance of interest in this experiment was the 
overall degree and pattern of performance improvement within the training trials, 
that is, the participants’ individual learning curves. The overall level of performance 
improvement refers to the Delta between the standardized performance scores of 
the frst and fnal trials. The pattern of performance change corresponds to whether 
the level of change is consistent from trial to trial, forming a linear growth trend, or 
if there is signifcant acceleration or curvature at key points in the training process, 
which could be assessed by ftting a polynomial, logarithmic, or exponential growth 
curve to the intra-individual performance data. 

We estimated both polynomial (quadratic) and exponential growth functions for 
each individual’s normalized training performance data for each core performance 
variable. This refects their initial level of performance (intercept), as well as the level 
and rate of growth over time, either positive or negative, as expressed in the quadratic 
or exponential function. This model allowed us to account for the time related to the 
number of trials which varied depending on training condition. 

z log˜ ˜ performancescore°°˛ slope* exp ̃ trials°˝ intercept. 

In this model, the intercept represents initial performance at the beginning of 
the training trials, while the slope corresponds to the rate of change of performance 
improvement across the trials. The full exponential model was calculated for each 
of the participants across conditions except for the “no training” condition which 
immersed participants immediately in the training test trials. An intercept-only 
form of the model was calculated for those participants with inadequate growth 
curve data. To construct the growth curve metrics, we needed at least three data 
points across the ten trials of data to construct a reliable trajectory of performance. 
Therefore, individuals with fewer than three training trial data points were elimi-
nated from the data set. 

After estimating the best ftting exponential function for each person’s data, we 
then estimated the area under the growth curve. The area under the exponential 
curve refects the individual’s cumulative performance improvement, assuming the 
potential for quadratic or exponential growth change. The area under the curve was 
then standardized into a z-score. This fnal z-score captures the totality of each indi-
vidual’s objective training performance over the training trials. The fnal objective 
metric has a mean of 0.00 and a standard deviation of 1.00. 

This approach was used to model performance improvement over the training 
trials. The level and pattern of improvement in and of itself represent a meaningful 
dependent variable. Additionally, the reliable variance of the performance scores 
measured in the transfer trials represents a critical indicator of overall learning. 
Together, these metrics can be used to form a comprehensive statistical model incor-
porating the core manipulated independent variables and covariates as predictors of 
cumulative learning and resulting transfer performance. 

Every performance measure was standardized using a single z-score calculation, 
normalizing the measure across all individuals (across external conditions) within 
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an individual learning trial. This allowed us to make meaningful, apples-to-apples 
comparisons across trials when more diffcult scenario conditions raised or lowered 
the effective performance ceilings across trials. This also allowed us to construct 
meaningful learning curves across trials based on intra-individual performance 
change. 

AVERAGE ATTEMPTS PER WAYPOINT EFFICIENCY 

The primary dependent variable related to the player’s ability to rescue the 
downed friendly forces was the average number of attempts per waypoint. This 
was used as a proxy for the actual number of waypoints, which differed by trial, 
and was subject to ceiling effects as the time limitation imposed by available 
fuel allowed most participants to reach 100% rescue for most trials before run-
ning out of fuel (i.e., with some spare fuel to return and reattempt any missed 
waypoints). The average number of attempts gets at the player’s effciency and 
prioritization effectiveness, and provides an invariant scale to compare perfor-
mance across trials. 

Results indicated a signifcant time (trial) effect for an average number of attempts 
per waypoint across the ten training trials, refecting fewer attempts per waypoint 
(12%) and greater effciency with practice (94% in Trial 1, 82% in Trial 10). 

We observed a signifcant effect for training condition on the normalized number 
of attempts per waypoint training performance growth metrics (higher scores refect-
ing better improvement in player effciency). Individuals in the Progressive Training 
condition demonstrated better growth in their effciency relative to individuals in the 
Random Training condition by approximately 0.50 SD units (Progressive Training 
M = 0.28, SD = 0.96; Random Training M = −0.27, SD = 0.96; F(1, 119) = 9.77, 
p < .01) (Figures 2.4 and 2.5). 

AVERAGE IDLE TIME EFFICIENCY METRIC 

The average idle time effciency metric is the average amount of time spent in idle 
positioning over waypoints as players validate and enter authentication codes, and 
is a measure of memory performance and data management effciency. Lower idle 
times translate into faster and more effcient rescues. This metric was normalized for 
meaningful cross-trial comparisons. The normalized training improvement perfor-
mance metric refects the level of improved effciency (i.e., reduced idle time) across 
the training trials, so higher scores mean better overall improvement over time. 
The raw version of this metric is the actual average amount of idle time, whereas 
the transformed effciency version of this metric is reversed such that higher scores 
refect better performance. 

Growth curve modeling of the raw idle time score showed a signifcant, negative 
quadratic growth pattern, with high average idle times in the frst two trials quickly 
reducing across the subsequent trials. Additionally, within-trial variability decreased 
progressively across the trials as participants’ rescue strategies and idle times stabi-
lized over time (Figure 2.7). 
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FIGURE 2.4 Average attempts at rescue per waypoint by instruction and training group. 

FIGURE 2.5 Average attempts at rescue per waypoint by training group. 

Results for the average attempts efficiency metric during the follow-up transfer trials 
showed no significant effect for either Training (F(2, 152) = 1.00, ns) or Instruction condi-
tion (F(1, 152) = 90.39, ns) (Figure 2.6). 



 

 

35 Game-Based Assessment of Unmanned Systems Operator Performance 

FIGURE 2.6 Average attempts per waypoint in the follow-up transfer trials. 

FIGURE 2.7 Growth curve showing the average idle time across training trials. 
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FIGURE 2.8 Average idle time improvement in training trials. 

Results with respect to the effciency metric showed a signifcant effect for train-
ing condition on the normalized idle time training performance growth metric 
(higher scores refecting better improvement in player effciency). Individuals in the 
Progressive Training condition demonstrated better growth in their effciency rela-
tive to individuals in the Random Training condition by approximately 0.70 SD units 
(Progressive Training M = 0.34, SD = 1.18; Random Training M = −0.33, SD = 0.64; 
F(1, 119) = 14.39, p < .01) (Figures 2.8 and 2.9). 

The improvement in effciency observed across training translated into better per-
formance during the transfer trials, with individuals in the Progressive Training con-
dition demonstrating the lowest average idle time relative to the other conditions by a 
factor of 0.40 SD units (Random Training condition) and 0.30 SD units (No Training 
condition). This pattern approached but did not achieve statistical signifcance 
(F(2, 152) = 2.11, p = .13) (Figure 2.10). 

AVERAGE SPEED PERFORMANCE METRIC 

The average speed metric is the average speed of the player’s non-idle time travel 
during mission execution, that is, the relative speed at which they are rescuing the 
friendly targets. This factors out the idle time required to recall authentication codes 
and is a measure of overall mission effciency. This metric was normalized to pro-
duce meaningful comparisons across trials and establish growth curves based on an 
identical metric. 
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FIGURE 2.9 Average idle time improvement between training groups. 

FIGURE 2.10 Average idle time in the transfer trials. 
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FIGURE 2.11 Growth curve showing the average UAS speed across training trials. 

Results indicated substantial improvement in the players’ average speed perfor-
mance during training trials, and that this improvement was contingent on training 
condition. There was a signifcant, positive linear trend, and negative quadratic trend 
showing accelerated growth across the frst half of the training trials which then 
leveled off across the second half. This trend shows that players were better able to 
manage the UAS speed to their advantage and more consistently operate at higher 
speeds across the later trials (Figure 2.11). 

The Progressive Training condition resulted in greater improvement gains in 
speed performance relative to the Random Training condition by a factor of nearly 
a full standard deviation unit (Progressive Training M = 0.53, SD = 1.12; Random 
Training M = −0.43, SD = 0.84; F(1, 119) = 24.29, p < .01) (Figure 2.12). 

However, this performance improvement did not translate into enhanced 
speed performance during the transfer sessions (F(2, 152) = 0.71, ns). This may 
be related to the inherently different speed requirement during the transfer tri-
als which included considerably higher quantities of waypoints and a need to 
maintain higher levels of speed throughout. This, in turn, reduced the vari-
ability in the participants’ speed performance metric during the training trials, 
thereby limiting the potential effects of the experimental variables on this metric 
(Figure 2.13). 
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FIGURE 2.12 Average UAS speed between instruction and training conditions during 
training trials. 

FIGURE 2.13 Average UAS speed between conditions during transfer trials. 
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TARGET PRIORITIZATION PERFORMANCE 

The players’ target prioritization performance was measured as the Euclidean 
distance value between the player’s sequence of waypoint rescues and the opti-
mal sequence based on the rules of engagement and ground truth priority values. 
This value was then normalized within each trial, providing a critical means of 
comparison across trials, given that the raw Euclidean distance values naturally 
increase with larger numbers of waypoints, and therefore, greater numbers of 
opportunities for suboptimal prioritizations. This metric relates directly to the 
player’s mission planning abilities and adherence to the specifc rules of engage-
ment, as the waypoint sequencing is done primarily during the mission planning 
phase. 

Results indicated substantial variability in the players’ prioritization performance 
during the training trials, as well as in their improvement on this metric across the 
trials. This level of improvement was contingent on the experimental variables, with 
a signifcant main effect of Instruction condition (Instruction M = 0.23, SD = 0.99; 
No Instruction M = −0.18, SD = 0.97; F(1, 119) = 5.18, p < .05), marginal main 
effect for training condition (Progressive Training M = 0.12, SD = 1.05; Random 
Training M = −0.11, SD = 0.94; F(1, 119) = 2.11, p = .15), and a signifcant instruc-
tion × training condition interaction effect (F(1, 119) = 6.05, p < .05). The form of 
this interaction indicates that though the Progressive Training condition generally 
produced greater prioritization performance improvement across the trials, relative 
to the Random Training condition, the training condition beneft was substantially 
greater when instruction was also provided. In this sense, the instructional interven-
tion essentially boosted the benefcial effect of Progressive Training (Figure 2.14). 

FIGURE 2.14 Average target prioritization score between conditions in training trials. 
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The training condition beneft enhanced performance during the transfer trials as 
well. There was a signifcant main effect for training condition, resulting in a 0.50 
standard deviation task prioritization performance enhancement in the Progressive 
Training versus Random Training Condition (Progressive Training M = 0.25, SD = 
0.91; Random Training M = −0.27, SD = 1.01; F(1, 152) = 3.41, p < .05) (Figures 2.15 
and 2.16). 

KNOWLEDGE ASSESSMENT 

The knowledge assessment was presented during the follow-on transfer trial ses-
sions, designed to assess understanding and retention of the key gameplay concepts 
and rules of engagement. Scores on the knowledge assessment provide a comple-
mentary perspective on the participants’ transfer performance, providing a more 
robust picture as to whether performance improvements are due to a deeper under-
standing of the gameplay concept as opposed to merely experience-driven improve-
ments in speed and effciency. 

Results with respect to knowledge assessment revealed that although neither 
independent variable’s main effects were signifcant, there was a signifcant instruc-
tion × training condition interaction (F(2, 173) = 3.61, p < .05). The form of this 
interaction indicates that the gap in the mean knowledge assessment scores between 
the Instruction and No Instruction conditions widened in the Random Training 
and No Training conditions, and was reduced in the Progressive Training condi-
tion. This provides evidence for a synergistic effect when the instructional interven-
tion is provided in conjunction with the Progressive Training, which is designed 

FIGURE 2.15 Average target prioritization score between conditions in transfer trials. 
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FIGURE 2.16 Target prioritization scores between training groups. 

to mimic AIT’s adaptive training algorithm. Instruction actually had a deleterious 
effect on performance in the No Training condition, potentially causing confusion in 
the absence of opportunities to practice the instructional concepts provided during 
the designated training trials. In the Random Training condition, the instructional 
intervention provided an approximately 0.57 standard deviation unit increase in per-
formance (M = −0.31 versus 0.26 in the No Instruction versus Instruction conditions, 
respectively), whereas in the Progressive Training condition, the instructional inter-
vention produced a smaller (0.10 standard deviation unit) increase (M = −0.05 versus 
0.05 in the No Instruction versus Instruction conditions, respectively). This speaks to 
the compensatory nature of the training intervention, specifcally for adaptive train-
ing to serve as a proxy for explicit instructional content. The Progressive Training 
intervention raised the overall group mean across the instructional conditions by a 
marginal amount (0.10 standard deviation units), compared to the Random Training 
condition, although the No Training condition produced a marginally higher group 
mean (with the Instruction versus No Instruction mean values in the reverse direc-
tion) (Figure 2.17). 

SELF-EFFICACY 

Results with respect to the self-effcacy measure provided additional evi-
dence of the joint beneft of the training and instruction interventions. Reliable 
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FIGURE 2.17 Knowledge transfer scores between conditions in transfer trials. 

experimental effects were observed for both the training (F(2, 173) = 2.40, p < .10) 
and instruction variables (F(1, 173) = 3.73, p < .10). These values approached but 
did not exceed the p < .05 statistical signifcance criterion, but would achieve 
signifcance with a slight increase in sample size and statistical power. However, 
the pattern of results refected benefcial effects of both training intervention 
with a consistent group mean advantage for the Instruction versus No Instruction 
condition (approximately 0.30 standard deviation units across the three training 
conditions), as well as consistently large spread across the three training con-
ditions, with an approximately 0.50 standard deviation improvement offered by 
Progressive versus Random Training, but slightly better performance observed in 
the No Training condition (Figure 2.18). 

The training effectiveness evaluation provides a critical component to the vali-
dation and future development of the training platform. The results of this effort 
will inform areas of need for future iterations of the software, and additional meet-
ings with SMEs will help create additional training scenarios for future platform 
validation studies. The results showed that the intended interventions (Progressive 
Training/Instruction), designed to mimic the adaptive training algorithm of the 
STEALTH ADAPT system, individually or synergistically produced tangible per-
formance benefts in a mission-realistic transfer environment. This trend was reli-
ably reproduced across several individual performance metrics refecting player 
accuracy, effciency, and mission effectiveness. Additionally, these results extended 
to several non-performance variables refecting player motivational, affective, and 
knowledge states. 
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FIGURE 2.18 Self-effcacy scores between conditions in transfer trials. 

INSIGHTS AND PRACTICAL IMPLICATIONS 

The fndings from this training effectiveness evaluation offer several important 
insights for the development and implementation of game-based training systems, 
particularly for complex operational environments like unmanned systems control. 
The results demonstrate that progressive, adaptive training approaches—when com-
bined with targeted instructional interventions—can produce meaningful improve-
ments in operator performance across multiple dimensions, including task effciency, 
prioritization accuracy, and knowledge retention. 

Several key implications emerge from these fndings. First, the superior perfor-
mance of participants in the Progressive Training condition suggests that carefully 
structured, scaffolded diffculty progression is more effective than randomized 
exposure for developing core operational competencies. This aligns with established 
learning theory regarding the importance of scaffolded skill development (Warm 
et al., 2008). The effectiveness of Progressive Training observed here parallels fnd-
ings from other high-stakes operational domains such as air traffc control (ATC), 
where research has shown that graduated exposure to increasing traffc complexity 
leads to better controller performance compared to random presentation of scenarios. 

The synergistic effect between Progressive Training and instructional intervention 
is particularly noteworthy. When explicit instruction was combined with Progressive 
Training, participants showed enhanced prioritization performance and knowledge 
retention compared to either intervention alone. This suggests that optimal training 
outcomes may require both structured skill-building opportunities and clear concep-
tual guidance—a fnding that has important implications for training system design 
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across multiple domains, including manned aviation, process control, and military 
command and control operations. 

The transfer of training effects to novel, more challenging scenarios is especially 
promising from an applied perspective. The fact that performance improvements 
persisted even in substantially more diffcult transfer trials suggests that the training 
interventions fostered genuine, fexible, transferable skill development rather than 
just rote familiarity with specifc scenarios. This kind of robust transfer is crucial for 
operational domains where personnel must be prepared to handle unexpected situa-
tions and novel challenges. 

Several directions for future research and development emerge from these 
fndings: 

1. Investigation of individual differences in training responsiveness, particu-
larly examining how factors like prior gaming experience, spatial ability, 
and working memory capacity may moderate the effectiveness of different 
training approaches. 

2. Development of more sophisticated adaptive algorithms that can dynami-
cally adjust both scenario diffculty and instructional support based on real-
time performance metrics. 

3. Exploration of additional performance dimensions such as team coordi-
nation and communication, which are increasingly important in modern 
unmanned systems operations. 

4. Integration of physiological monitoring to better understand operator work-
load and attention states during training, potentially enabling more precise 
adaptation of training diffculty. 

5. Extension of the training approach to other operational domains such as cyber 
operations, intelligence analysis, and emergency response, where similar cog-
nitive demands for sustained attention and complex decision-making exist. 

The parallel between UAS operation and other complex operational domains sug-
gests broader applications for this training approach. The challenge of maintain-
ing vigilance while monitoring largely automated systems is increasingly common 
across numerous military and industrial domains. In military aviation, both manned 
and unmanned platforms are experiencing increasing levels of automation, requiring 
pilots and operators to transition effectively between automated and manual control 
modes. The fndings regarding Progressive Training and sustained attention have 
direct implications for training programs across the spectrum of aviation platforms, 
from traditional fghter aircraft to maritime patrol aircraft to emerging autonomous 
combat aircraft. 

ATC represents another domain where the fndings have clear applications. 
Controllers face similar challenges in maintaining situation awareness while moni-
toring multiple automated systems and coordinating multiple aircraft. The demon-
strated effectiveness of progressive, game-based training in developing sustained 
attention and decision-making skills aligns well with emerging needs in ATC train-
ing, particularly as the National Airspace System becomes more automated and con-
trollers must manage an increasing mix of manned and unmanned traffc. 
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Beyond aviation, the training approach shows promise for other unmanned sys-
tems domains, including ground robotics, maritime systems, and space operations. 
Each of these domains requires operators to maintain vigilance while supervising 
automated systems, often for extended periods. The success of Progressive Training 
in developing sustained attention and complex decision-making skills could inform 
training programs for autonomous ground vehicle operators, unmanned surface and 
subsurface vessel controllers, and satellite operations personnel. 

In the industrial sector, similar cognitive demands exist in process control opera-
tions, power plant management, and automated manufacturing supervision. These 
domains share key characteristics with UAS operations, including the need to main-
tain situation awareness during largely automated operations while being prepared 
to respond quickly to anomalies or emergencies. The study’s fndings regarding 
the effectiveness of combined Progressive Training and instructional intervention 
could help inform the training program design for these industrial applications, par-
ticularly as facilities become more automated and operator roles shift increasingly 
toward system supervision. 

Moreover, the fnding that game-based training can effectively develop complex 
operational skills has implications for recruitment and selection. The successful use 
of experienced gamers as proxy participants suggests potential value in considering 
gaming profciency as one indicator of aptitude for certain operational roles, though 
this would require careful validation. 

As unmanned systems continue to proliferate across military and civilian appli-
cations, the need for effective operator training will only increase. The insights 
gained from this study suggest that game-based training platforms, when properly 
designed with progressive diffculty and integrated instruction, can play a valuable 
role in meeting this growing training demand. Future development should focus on 
further refnement of adaptive algorithms, expansion of scenario complexity, and 
integration with other training modalities to create comprehensive preparation for 
operational challenges. 
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Game-Based Small 3 
Team Training 
A Guide to Implementing 
Adaptive Game-Based 
Simulation Training 

Richard J. Simonson and Crystal M. Fausett 

Literature on organizational effectiveness and team performance has illustrated 
the importance of teams in producing stronger and more effective outcomes (Salas 
et al., 2008a). Despite this known relationship, little emphasis has historically been 
placed on the importance of teamwork competencies during formal education and 
organizational training – particularly compared to taskwork competencies. The 
explanatory mechanism for this disproportionate training is how traditional training 
methodologies were developed and optimized for individual and technical knowl-
edge and skill development. In contrast, teamwork is highly variable and based on 
soft skills (Gobeli, 2012). Additionally, barriers in adopting and integrating team 
training, identifying team training needs, and eliciting them are resource intensive 
(Cannon-Bowers & Salas, 1998) and are often only seen when the team engages in 
activities over some time (trust, psychological safety, etc. (Bohlander & McCarthy, 
1996; Brasier et al., 2023)). 

A common method used by organizations and researchers alike to mitigate these 
challenges is the use of Simulation-based training (SBT). SBT is a method of instruc-
tion that uses an interactive environment to replicate key features of “real-world” 
scenarios (Salas et al., 2009). Compared to traditional training methods, SBT pres-
ents a medium for teams to work together and elicit competencies and soft skills that 
only appear when teams engage in work. Further, SBT presents an opportunity to 
contextually train teams and tasks simultaneously by carefully considering cognitive 
and physical factors. 

An extension of SBT, game-based ST (GBST), adds to the strengths of SBT and 
mitigates some of its limitations. GBST is the concept of using games as a modal-
ity to simulate the physical or cognitive characteristics and processes into SBT. The 
GBST method has been linked to increased trainee engagement compared to tra-
ditional and SBT methods (Sitzmann, 2011). This response increases motivation, 
learning, and transfer of the learner’s training (Pellegrino & Scott, 2004; Prensky, 
2003). Games have also become widely adopted across gaming and training indus-
tries, leading to cost-saving opportunities (Meliza et al., 2007). Additionally, the 
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format of a game as a training tool presents itself as a naturally adaptive framework 
that promotes stronger training outcomes, re-usability of training, and engagement 
from learners (Graafand et al., 2017; Ratwani et al., 2010). The adoption of GBST 
for team training by researchers and practitioners has signifcantly increased with 
technological capabilities and accessibility. However, developing and integrating 
games as a simulation-based tool requires careful planning and multi-disciplinary 
expertise to ensure success. Thus, the purpose of this chapter is threefold: (1) synthe-
size the theory and practice of team training research, (2) describe team training as 
implemented via GBST, and (3) provide guidance on how to utilize adaptive GBST 
strategies to improve small team training practices. 

TEAM TRAINING 

Teams are complex, fuid, and ever-evolving entities that form and perform toward a 
shared goal (Salas, Rosen et al., 2008). The characteristics of teams and their contri-
butions to performance, coupled with their varying composition, signifcantly con-
tribute to the infamous challenges faced in their research and development (Hamman, 
2004; Sottilare et al., 2011). Subsequent efforts to decipher these characteristics and 
correlate them with performance and effectiveness have led to current frameworks 
of team competencies. A team’s ability to work together effectively necessitates that 
teams must have profciency in both the tasks they are completing, and the compe-
tencies required for effective teamwork. When evaluating the necessity for training, 
its success largely depends on these two main factors: the team’s capability to col-
laborate effectively and their profciency in accomplishing their designated tasks. 
A lack of skill in either teamwork or task execution can result in poor team perfor-
mance. Conversely, if the training does not accurately address the specifc area that 
needs improvement, whether it’s teamwork or task-related skills, it may not be effec-
tive (Salas et al., 2008a). Cannon-Bowers et al. (1995) provide a clear explanation 
of the interplay between taskwork and teamwork. They refne existing frameworks 
related to both task and team dynamics, establishing a solid foundation for identify-
ing the most effective content and methods for team training. 

COMPETENCIES IN TEAM TRAINING 

The basis of team training is centered around the measurement, assessment, and 
targeted improvement of team-based competencies. Competencies describe the 
characteristics an individual exhibits that contribute to the successful performance 
of a task. The overarching framework of team competencies used today originates 
in Bloom’s taxonomy of learning domains (Engelhart et al., 1956), which breaks 
down learning competencies into knowledge, skills, and attitudes (KSAs). Under 
individual-level competencies, KSAs refer to one’s knowledge necessary to perform 
a task (knowledge), their psychomotor capability to carry out the actions required 
to perform the task (skill), and their beliefs related to performing the task (attitude). 
The team framework of KSAs extends these defnitions and integrates them into a 
hierarchical structure with both individual and team competencies and task- and 
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team-related competencies. Under the teaming lens, knowledge represents the infor-
mation and experience that team members have with respect to one another and the 
associated task. This competency stems from the research regarding shared mental 
models and their importance in teaming (Cannon-Bowers et al., 1995). Skills, within 
the teaming perspective, describe the observable behaviors exhibited by teams that 
contribute to team performance. Finally, attitudes are described as the beliefs that 
motivate teams to perform (Salas et al., 2008b). 

Similar to individual training, teamwork KSAs are contextualized with the train-
ing objective and purpose. Cannon-Bowers et al. (1995) refned a model to estab-
lish and differentiate competencies based on context. They specify that knowledge, 
skills, or attitudes can fall into one of four categories: team-specifc or generic com-
petencies or task-specifc or generic competencies. Team-specifc competencies are 
KSAs that are affected by the characteristics of a team (e.g., trust that other team 
members believe in the team); in contrast, team-generic competencies are those 
whose KSAs are independent of specifc team characteristics (e.g., communication 
and leadership skills). Task-specifc competencies in teamwork are team behaviors 
that are associated with performance in certain tasks (e.g., shared knowledge of each 
other’s task-specifc roles); and task-generic team competencies describe those that 
apply regardless of the task (e.g., trust that teammates will complete their tasks). 

While the categories of competencies are relatively constrained, the number of 
competencies associated with teamwork is, theoretically, endless. For example, in 
their literature review, Cannon-Bowers et al. (1995) identifed 130 individual team-
based skills alone. Further, when training within the context of task-based competen-
cies, the number of KSAs included in training can quickly become overwhelming. 
Additionally, some competencies only form as the team works together, meaning 
that a competency that may warrant training will not yet have formed. Fortunately, 
multiple team-based competency models that target the most performance-related 
KSAs have been suggested. Notable models include Salas et al.’s (2005) proposal 
of a big fve model of teamwork competencies that most contribute to a team’s com-
pelling performance, including team leadership, adaptability, mutual performance 
monitoring, backup behavior, and team orientation, which are dependent on the 
coordinating mechanisms of shared mental models, closed-loop communication, 
and mutual trust; or Salas et al.’s (2015) heuristics of teamwork which include coop-
eration, coordination, confict, coaching, and communication, driven by three infu-
encing conditions: context, composition, and culture. 

TRAINING TYPES AND CONTEXT 

Ensuring that team training is optimized for effectiveness and transfer to real work 
is an important consideration. Thus, choosing a strategy that most aligns with the 
training objective can signifcantly improve the training process. This section will 
explore a range of training strategies, focusing primarily on three key types: pro-
cedural training, cross-training, and adaptive training, with a special emphasis on 
adaptive training (Table 3.1). 

Procedural training focuses on learner acquisition of specifc sequences of actions 
(i.e., procedures) to accomplish a particular task or goal (Gorman et al., 2010). 
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TABLE 3.1 
Summary of Training Types 

Training Type Description Benefts Limitations 
Procedural Training Focuses on learner Useful in high-stakes Does not extend well to 

acquisition of specifc settings to ensure tasks with unforeseen 
sequences of actions standard protocol variations. 
to accomplish tasks. under stress. 

Cross-Training Involves training Improves mutual May not beneft 
individuals on the understanding, shared individual performance, 
responsibilities of mental models, less effective as team 
their teammates to coordination, and size and diversity 
develop skills beyond team performance. increase. 
their job functions. 

Adaptive Training Introduces controlled Encourages fexibility Requires sophisticated 
disruptions (perturbations) and adaptation to new design and 
to enhance skill task challenges. implementation to 
acquisition and introduce and manage 
performance. perturbations effectively. 

Procedural training involves breaking complex tasks down into step-by-step proce-
dures that can be followed. Often used in settings with high consequences for failure, 
procedural training helps remember a standard protocol under increased workload 
and stress levels, such as those in emergency response and military training (Hockey 
et al., 2007; Sauer et al., 2008). While this approach leads to skillful execution of 
the trained task, it does not extend well to tasks that involve unforeseen variations or 
disruptions, which are common in real-world situations (Ramakrishnan et al., 2017). 

Cross-training involves training individuals on the responsibilities of their team-
mates. This allows individuals to learn and develop skills different from their job 
functions. Cross-training is benefcial for creating a mutual understanding of task-
related work between team members and has been shown to improve shared mental 
models, coordination, and team performance (Marks et al., 2002). The cross-training 
method may not beneft individual performance, as individuals must learn several 
new roles. Further, cross-training does not scale as teams increase in size and diver-
sity (Nikolaidis & Shah, 2013). 

Adaptive training, sometimes known as perturbation training, involves carefully 
introducing controlled disruptions, or perturbations, into the learning process to 
enhance learners’ skill acquisition and performance (Gorman et al., 2010). From the 
dynamic systems literature, a perturbation is the application of an outside force that 
briefy halts or otherwise disrupts a dynamic process, forcing that system to develop 
novel processes to adapt and return to the desired stable state (Gorman et al., 2010). 
In team training, perturbation is used to disrupt coordination procedures throughout 
the learning process intentionally. This compels the team to devise new methods to 
achieve their objectives. Perturbation training is “a human team-training strategy 
that requires team members to practice variations of a given task to help their team 



 

 

 

 

   

 
 
 

 
 

52 AI and Gamifcation Technologies for Complex Work 

generalize to new variants of that task” (Ramakrishnan et al., 2017, p. 495). In con-
trast to training methods that involve varying the situation or objectives, perturbation 
training involves disrupting crucial coordination links while maintaining a crucial 
objective. Perturbation training aims to counteract habituation and procedural rigid-
ity that can arise from cross-training and procedural training, respectively (Gorman 
et al., 2010). This approach enables teams to develop fexible interaction processes 
that can be applied to new and unfamiliar task conditions. 

While perturbation training is one specifc approach, adaptive training can also 
include other techniques. Adaptive training may involve dynamic simulations, scenario-
based training, real-time adjustments based on learner performance, or personalized 
learning paths that adapt to the individual’s needs. Another adaptive training tech-
nique is scaffolding. Scaffolding refers to offering support to students when required, 
gradually reducing that support as their competence and skills improve (Hogan & 
Pressley, 1997). Adaptive training systems have also been defned as “serious game-
based systems whose goal is to engender communication opportunities for players 
to learn about their strengths and weaknesses, receive real-time in-game assessment 
feedback on their performance, and share diverse solutions and strategies during, 
between, and after a gameplay to update and adapt their understanding” (Raybourn, 
2007, p. 206). 

SCAFFOLDING AND ADAPTIVE TRAINING TECHNIQUES 

Vygotsky & Cole’s zone of proximal development (1978) refers to the distance 
between what a learner can do without help and what they can do with guidance 
(Raymond, 2000). Scaffolding, which refers to providing temporary support (scaf-
folds) to a learner to accomplish tasks, seeks individualized support based on a learn-
er’s zone of proximal development (Chang et al., 2002). As learners become more 
profcient, this support is removed or adapted based on the current level of perfor-
mance. Examples of scaffolding as a training technique include guided instructions, 
hints, modeling of tasks, and questioning techniques. Other adaptive training tech-
niques encompass several different approaches. Mastery learning is an approach in 
which learners are required to achieve a high standard of learning in one area before 
moving on to the next topic (Bloom, 1968). The differentiated instruction approach 
tailors teaching to individual needs, contrasting with traditional uniform methods 
that ignore students’ unique needs (Suprayogi et al., 2017). Inquiry-based learning, 
however, promotes learning through questioning, exploration, and problem-solving 
(Friesen & Scott, 2013) (Table 3.2). 

GAME-BASED SIMULATION TRAINING 

SBT methods have been largely successful in their application to team training. 
However, they are still susceptible to limiting factors – most notably, prohibitive 
resource and monetary costs (Bell et al., 2008). Subsequently, researchers have sought 
to identify methods that can reduce costs and extend as well as increase the ben-
efts of SBT (Sitzmann, 2011). One method that has gained recent popularity is the 
use of game-based training (GBT) methods, which use games or game elements to 
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TABLE 3.2 
Summary of Adaptive Training Techniques 

Adaptive Training 
Techniques Purpose and Beneft 
Scaffolding Provides temporary support to learners, adjusting to their evolving 

competency levels, thereby enhancing skill acquisition. 

Mastery Learning Ensures learners achieve a high level of understanding and skill in one area 
before moving on, promoting deep knowledge and reducing skill gaps. 

Differentiated Instruction Tailors content and teaching methods to meet the diverse needs of learners, 
improving engagement and effectiveness. 

Inquiry-Based Learning Encourages learners to explore and ask questions, fostering critical 
thinking and adaptability. 

enhance training and learning (Martens et al., 2008), and by extension, game-based 
approaches to simulation training. 

GBT is a tool integrated into our everyday lives, from childhood to our profes-
sional interactions, in both virtual and physical mediums (Martens et al., 2008). 
While playing and engaging in games are intuitive to human nature, there exists 
discourse in the exact operational defnition of a game and game-based simulation, 
and thus, a challenge in creating consistent interactions in GBT (Stenros, 2017). 
For this work, and in developing game-based simulation and training, we will use 
Browning’s (2015) recommendation of essential game characteristics: a game must 
distract learners from the nature of the game (e.g., training) to promote engage-
ment through play, the learner must be allowed to have choices that create dynamic 
events, there is no expectation of productivity tied to the real work conducted out-
side of the game, rules defne the world and interactions that create obstacles the 
learner experiences in the game; additionally, the rules should create and awareness 
to the learner that the game is distinguishable from real work. The last point is 
essential to differentiate the context of this chapter concerning a game compared 
to a simulation. SBT relies on mimicking reality to the greatest extent possible, 
whereas a game’s objective is to represent reality and engage players via gaming 
elements (Johnston & Whitehead, 2009; Narayanasamy et al., 2006). 

GAME PROPERTIES AND TRAINING 

Games meant for training and education have historically been categorized as 
“serious games,” but recent literature has found evidence that various game char-
acteristics (not designed for the explicit purpose of training) are associated with 
increased learning (Pistono et al., 2021). The distinction between “serious games” 
and commercial games has become muddled; commercialized games sold primarily 
for entertainment purposes have quickly become serious games in educational and 
research settings (e.g., Minecraft (Microsoft, 2023; Nguyen & Rank, 2016); Kerbal 
Space Program (Rosenthal & Ratan, 2022; Take-Two Interactive Software, 2023); 
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Artemis Spaceship Bridge Simulator (Robertson, 2023; Simonson et al., 2021)), 
while initially serious games ranked have high in entertainment and enjoyability 
to entertainment-focused consumers (e.g., America’s Army (Pellegrino & Scott, 
2004; Shen et al., 2009; U.S. Army, 2002); also see (Hussain et al., 2008)). While 
seemingly at odds with traditional objectives of training, the use of commercialized 
games for training purposes suggests an important insight: effective training can be 
both educational and enjoyable. Learning and fun are not mutually exclusive in a 
well-developed training program. 

Instead of classifying games as “serious games” or not, a more pragmatic 
approach to understanding games as a training medium is identifying the charac-
teristics associated with learning processes and outcomes. A swathe of literature 
reviewed by Wilson et al. (2009) has provided, albeit not yet comprehensive, links 
between game characteristics and their ability to train various competencies. This 
research has also been extended to the team training domain. For example, Marlow 
et al.’s (2016) review of game attributes associated with team training identifed eight 
game attributes: action language, assessment, confict or challenge, environment, 
game fction, human interaction, immersion, and rules or goals that mapped onto 
three teamwork competencies: coordination, communication, and cognition. Other 
literature has also identifed specifc games, both virtual and physical, that were 
correlated with increased profciency in various teamwork competencies: Du Plooy 
and Parker (2020) utilized the physical-based marshmallow game for training team-
work, reporting the game’s elements were effective in training and promoting team 
psychological safety; Martín-Hernández et al. (2021) noted a signifcant increase in 
intrinsic motivation, team engagement, team competence, and innovative behaviors 
from the physically based game called the group to the rescue; Peppen et al. (2022) 
successfully increased team situational awareness, decision making, communica-
tion, and resource management competencies via the web-based game Team Up! An 
important distinction to be made with respect to GBST is the distinction between 
gamifed SBT and GBST. GBST necessitates that SBT becomes a game via adhering 
to the characteristics of what a game is (Browning, 2015), whereas a gamifed SBT 
integrates game-like elements into a simulation (scoreboards, rewards, badges, etc.). 
While gamifcation does have benefcial properties in SBT, its properties are inher-
ently different from those of GBST and will not be discussed in this chapter. 

So far, we have discussed the theory and practice behind the complexities of 
teamwork and team training and have illustrated the recent adoption and benefts 
of the GBST approach. In summary, teamwork is a non-intuitive practice that takes 
purposeful and targeted training to improve. Traditional training methods are ill-
suited to training team competencies due to their adaptive nature (Gorman et al., 
2007). SBT mitigated many of the challenges associated with traditional team train-
ing but still suffers from various limitations that reduce adoption. The recent work 
and application of GBST has shown promising results in delivering the known ben-
efts of SBT, while also addressing some of its weaknesses. However, GBST requires 
careful planning and development with interdisciplinary teams to ensure a success-
ful and engaging training initiative. Therefore, the following section of this chapter 
will detail a literature-based guide on the best practices for developing GBST for 
small teams. 
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DEVELOPING ADAPTIVE GAME-BASED TEAM TRAINING 

CONDUCT A TEAM NEEDS ASSESSMENT 

The frst step to any training initiative is understanding where the training should 
focus. Due to the complexity and emergent nature of many teamwork competencies 
within a team training context, it is imperative to accurately assess which compe-
tencies are lacking, otherwise known as a needs assessment. Conducting a needs 
assessment requires three steps: frst, practitioners should determine which com-
petencies to train. This process may include a search of the literature to identify 
which competencies are most associated with performance outcomes in the targeted 
domain and determine whether the training will need to include task- and team-
specifc or generic competencies. Next, determining whether training is an effective 
approach should be considered. Many factors can infuence and negatively impact 
a team’s performance, including individual interference (e.g., singular team mem-
bers attitudes, behaviors, or competencies; poor team composition; poor or ineffec-
tive leadership), organizational infuence (e.g., organizational culture), and external 
infuence (e.g., environmental factors). If lacking competencies are affected by these 
or similar infuences, then team training may not be the most effective approach. 
Finally, a training curriculum details what competencies will be trained, how they 
will be trained, and how their improvement will be compared to pre-established 
success parameters (Brown, 2002). A lack of a comprehensive understanding of the 
competencies before training may lead to ineffective training and poor staff out-
comes (Cekada, 2011). 

IDENTIFY SIMULATION CONTEXT – 
ESTABLISHING THE TRAINING DOMAIN 

Next, one needs to set the simulation’s context, or domain. Within GBST, the domain 
represents the game’s characteristics and its scenario. This is a crucial step in the 
GBST process as this choice creates a boundary around what and how competencies 
can be trained (Rosen et al., 2008). Additionally, from a game-based perspective, the 
domain choice can mitigate or create barriers to training (Hussain et al., 2010). For 
example, suppose the training needs assessment identifed that the team required 
communication training. In such a case, using a game that does not require informa-
tion exchange may be far less effective, or possibly completely ineffective, at creating 
opportunities to elicit and train communication-related KSAs. 

This step presents two possible paths: developing a custom game or using 
Commercial Off-The-Shelf (COTS) games. Custom-developed games provide 
extensive fexibility and versatility to practitioners, allowing for application to vari-
ous purposes and training needs. However, developing a custom game is highly chal-
lenging, time-consuming, and requires development with interdisciplinary expertise 
in the targeted domain (e.g., teamwork), training, and game development (Hussain 
et al., 2010). COTS games, however, may reduce fexibility and versatility but are 
signifcantly more cost- and resource-effcient. However, COTS presents the chal-
lenge of fnding the right game for the identifed training needs. While research 



  

 
 
 
 
 
 
 
 
 
 
 

   

   

 
 
 
 
 
 
 
 
 

  

 

56 AI and Gamifcation Technologies for Complex Work 

has linked certain gaming elements to trainable competencies, not all games per-
fectly summarize their elements, which can make fnding the right game diffcult 
(Simonson et al., 2023). Fortunately, GBT’s growing popularity means a growing list 
of games, and their training effectiveness is available in the literature (Doherty et al., 
2018; Hussain et al., 2008; Wilson et al., 2009). 

SET LEARNING OBJECTIVES 

Identifying competencies in the needs assessment is crucial to understanding 
what needs to be trained, but it does not provide information on how they will be 
trained. To gather this information, one needs to set the learning objects of the 
training. Learning objectives set the course for training by describing how one will 
measure the selected competencies and the point at which a trainee successfully or 
unsuccessfully gains profciency in the competency. An important consideration 
in developing learning objectives, particularly in GBST, is determining how they 
will appear and be measured. For example, if the objective of a training initiative 
is to establish stronger communication skills, then understanding what facets of 
communication contribute to team effectiveness and performance is important. 
Identifying measurable competencies is completed by establishing the training’s 
targeted KSAs. 

SET THE TRAINING KSAS 

Following the guidance of Salas et al. (2015), the competencies associated with effec-
tive team performance are endless. However, the extant literature provides evidence 
of task- and team-specifc and generic competencies correlated with high-performing 
teams. The extensive nature of teamwork means that hundreds of competencies and 
even more variations on those competencies are possible. Therefore, we recom-
mend the use of prior literature and domain-specifc training Subject Matter Experts 
(SMEs) to assist in picking and integrating KSAs. 

INTEGRATING THE GAME FRAMEWORK 

Integration of games into SBT is an essential aspect of the GBST development pro-
cess whose complexity depends on various factors. One primary factor is whether 
the decision is made to develop a custom game (either via game development or 
using game development platforms) and integrate it into simulation training or rely 
on a COTS game to provide the framework. If the former route is chosen, carefully 
considering their formation is necessary; otherwise, the benefts of GBST may be 
nullifed. In this case, we highly recommend forming an interdisciplinary team 
with experience in training, expertise in the targeted domain, and game design 
and development to ensure success. Prior research on the best practices and game 
characteristics for review is also available to help promote the chances of success 
(see Hussain et al., 2010; Salen & Zimmerman, 2003). COTS games present a 
simpler and more direct approach to this step as their stories and engaging proper-
ties are already developed. But, as discussed previously, fnding a game that can 
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integrate and elicit the training context, learning objectives, and KSAs (Doherty 
et al., 2018; Simonson et al., 2023), as well as a luminous attitude in the trainees 
(Salen & Zimmerman, 2003) can be challenging. Fortunately, the growing popu-
larity of game-based learning has led to increased awareness and sharing of game-
competency associations. 

GAME ELEMENTS AND KSA ELICITATION 

Once the KSAs to train are established, the next step is to determine how the train-
ees will elicit them. Within traditional SBT, practitioners are encouraged to create 
set objectives that can be used to trigger a KSA-related response from the trainees 
(Grossman et al., 2014). This technique also applies to GBST. When implementing 
this technique, each learning objective should have at least one trigger to ensure 
completeness of training. An example of the trigger and response method in GBST 
is illustrated by Ramachandran et al. (2016), who utilized a workload management 
mechanic within their game-based learning study, causing one teammate to become 
overloaded with tasks. This trigger was used to elicit the expected response of team 
cohesion via other teammates assisting the overloaded team member. 

While team competencies may be associated with certain triggers based on the 
training design, the reality is that the teaming competencies exhibited outside of 
these triggers are equally important. Fortunately, game-based approaches, espe-
cially within adaptive training frameworks, offer multiple other techniques to elicit 
competencies, dynamic simulations, scenario-based training, real-time adjustments 
based on learner performance, or personalized learning paths that adapt to the indi-
vidual’s needs. For example, Simonson et al. (2021) utilized their chosen games’ 
built-in diffculty settings to create an additional challenge for the training teams; 
this method led to changes in competency elicitation throughout the game rather 
than at specifc points in the game. Special consideration for the elicitation mecha-
nisms may also be necessary when developing, testing, and iterating on the training 
design and elicitation methods. Continuing from the game-diffculty example, rely-
ing on a game’s diffculty can present unforeseen challenges and require additional 
precaution. First, the overall diffculty changes may not affect the diffculty associ-
ated with the interactions that trigger competencies (Hussain et al., 2010; Ratwani 
et al., 2010). Second, game diffculty can signifcantly affect the opportunities to 
elicit teamwork competencies; too little diffculty may reduce engagement, and too 
much diffculty may overwhelm teams and reduce their ability to work together 
(Marlow et al., 2016). 

KSA ASSESSMENTS AND CONSIDERATIONS 

Due to the nature of time- and event-varying competency elicitation, many GBT 
initiatives and studies also choose to observe the competencies as they are exhibited 
rather than at specifed time event points. However, this requires raters to observe 
and record the event. Subsequently, the choice of data collection modality and 
method and the ability to ensure high reliability from multiple observers should be 
carefully considered. As teams can exhibit competency from both unobservable 
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cognitions and observable behaviors, some research suggests measuring the 
targeted competency via multiple methods (Koh et al., 2014; M. Rosen et al., 
2010) to capture the knowledge, behavioral, and affective components of the 
competency. For example, mutual trust, described as “the shared belief that team 
members will perform their roles and protect the interests of their teammates” 
(Salas et al., 2005, p. 561), can be observed by the open sharing of information 
or teammates openly admitting mistakes, but they can also be tested by deter-
mining the level of agreement of each team members belief that other members 
will complete their tasks. Test-based and survey-based methods are effective at 
measuring the cognitive side of competencies. As a note, survey-based methods 
are contingent on the validity and reliability of the survey used; prioritizing psy-
chometrically validated surveys is recommended. To illustrate this, in the case 
of backup behaviors, one could test each member’s ability to accurately assess 
team workload proportions or use a survey that gauges each member’s belief 
that their team exhibits backup behaviors (Salas, Rosen et al., 2008). In contrast, 
observation-based assessments are effective at seeing the behavioral character-
istics of a competency. From a backup behavior perspective, an observation tool 
might record the backup behaviors as they occur. As with survey-based methods, 
observation tools vary by measurement and will affect the precision with which 
the competency is measured. 

From a human-rater perspective, checklists, frequency counts, and rating scales 
are commonly used, each with advantages and limitations. Checklists are easy and 
quick to use but only allow for the recording of dichotomous events (Was the behav-
ior elicited? Was it a positive or negative behavior? etc.); frequency counts extend 
checklists by allowing one to determine the density of the behavior (e.g., number 
of times it was exhibited); whereas behavioral rating scales add a dimension of 
quality assessment. Prior literature on team training has successfully utilized these 
tools, with some arguing that behavioral rating scales are imperative as teamwork 
competencies may lie on a continuum of quality (Griggs, 2021). Computer-based 
assessments are also available for assessing competencies during training, which 
can reduce the needed resources and time for training. Examples include Deaton 
et al.’s (2007) Enhancing Performance With Improved Coordination (EPIC) tool, 
which aids reviewers in reducing the workload associated with team assessments; or 
Alozie et al.’s (2020) Multimodal Integrated Behavior Analysis (MIBA) tool, which 
automatically tracks trainee movements and tracks specifc elements (mouth move-
ments, gaze, facial expression, etc.). 

Finally, it’s important to consider the level at which the competency is assessed. 
Team-based competencies are based on the interaction of multiple members with 
one another and the group as a whole. Subsequently, depending on the context, some 
competencies can be measured at the individual level (e.g., an individual’s team-
work KSA) or at the team level (e.g., each member’s competency score aggregated). 
This decision is based on the context of the training and learning objectives and 
the theoretical structure of the construct. For example, Lee et al. (2018) studied 
confict in teams and differentiated individual confict as a member’s confict with 
another member and team-level confict as the team’s members acknowledgment of 
that confict. 
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BUILT-IN ADAPTIVE FRAMEWORKS 

Adaptive training constitutes that a training session can dynamically change based 
on the learner’s performance or that sequential training sessions adapt to prior per-
formances. An adaptive assessment support system, or using technology to person-
alize and target the assessment process for distinct learners, can integrate this into 
training by altering the presentation of materials and assessment to best suit the indi-
vidual learner(s). The process involves tailoring questions’ content, sequence, and 
diffculty level (generally based on a learner’s responses and performance). However, 
tracking performance and competencies through adaptive training can be a daunt-
ing task. Various technologies exist to support these efforts, but the effectiveness of 
these technologies is predicated on the adaptive mechanisms built into the training 
(see Arnold et al.’s (2013) approach using storyboarding or Hussain et al.’s (2010) 
approach using objective mapping). When these mechanisms are developed, they 
can be utilized to guide when and how the training adapts manually, or via the use 
of automated Learning Management Systems (LMS). 

While adaptive training frameworks are feasible with both human-based and 
computer-based or aided assessment methods, they beneft greatly from computer-
aided methods due to their time and scaling potential. LMS tools use algorithms 
and data analytics to continuously analyze performance, track progress, and pro-
vide insights for learners and educators/instructors. This allows for developing a 
personalized learning experience for students by quickly determining specifc areas 
of strength or weakness and pinpointing gaps in knowledge. Subsequently, calibrat-
ing diffculty based on the team’s performance can occur rapidly and automatically, 
which is a crucial element in optimizing the effectiveness of team training (Salas & 
Burke, 2002). 

CONCLUSION 

The objective of this chapter was threefold: introduce and elucidate the purpose and 
motivations behind team training, describe the benefts of GBST within an adaptive 
training framework, and provide a guide and resources on developing a GBST initia-
tive. Our review of team training literature elucidated the complexity behind teams 
and their work. We described the relationship behind the characteristics of teams 
(e.g., competencies) that contribute to improved teamwork and further described 
their specifc and generic association with teams and their tasks. We also reviewed 
the game-based learning and training literature to summarize and contextualize how 
games use their unique characteristics to develop a luminous attitude in their play-
ers, which is the primary engagement factor in GBST. We further provided a sum-
mary of the literature on games and their innate elements that lead to competency 
training capabilities. Finally, we provided a guide on utilizing GBST and adaptive 
training frameworks in team training contexts and suggested that the curriculum 
should include (1) a team training needs assessment, (2) identifcation of learning 
objectives based on training needs, (3) associating competencies and their KSAs to 
the set learning objectives, (4) a determination to create a custom game environment 
or to use a COTS game to integrate into the SBT, (5) methods to elicit the KSAs, 
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both from a game-element and simulation-based approach, (6) guidance on how 
each KSA will be assessed as the modality (e.g., human-based or computer-based) 
of assessment, and fnally (7) considerations on how training will adapt to learner 
performance, as well as tools and frameworks to track said performance changes. 
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Game-Based Tools for 4 
Highly Automated Work 
Trends, Challenges, 
and Opportunities 

Alejandro Arca, James C. Ferraro, 
and Phillip M. Mangos 

INTRODUCTION 

The nature of work for many occupations is changing, evolving to adopt or develop 
new technologies to automate tasks previously performed manually. As automated 
systems and artifcial intelligence (AI) proliferate the workspace, talent organiza-
tions must seek out the right skills and attitudes relating to working with auto-
mation (Brynjolfsson & McAfee, 2014). According to the U.S. Bureau of Labor 
Statistics (2024), while the federal government remains a critical employer in 
specialized and highly automated domains such as cryptography, cybersecurity, 
and intelligence analysis, private sector opportunities have experienced substantial 
expansion. For example, labor market projections indicate robust growth in infor-
mation security professions. The U.S Bureau of Labor Statistics (2024) forecasts 
a 33% increase in information security analyst positions from 2023 to 2033, sig-
nifcantly outpacing the average growth rate for other occupations. This projection 
translates to approximately 17,300 annual job openings throughout the decade. 
Additionally, the cybersecurity workforce reached 5.5 million professionals glob-
ally in 2023, as documented by the ISC2 Global Workforce Study (ISC2, 2023). 
The workforce recruitment and training landscape in high-tech felds, including 
software development, cybersecurity, and military domains, refects these signif-
cant technological and strategic shifts. 

This chapter will investigate trends, challenges, and opportunities associated with 
game-based assessments for recruiting, assessment, and training in highly auto-
mated work environments. We will examine the current state of automation and AI 
in the workplace, the importance of effective human-automation interaction, and the 
potential of game-based assessments. This chapter will provide a comprehensive 
understanding of how organizations can better prepare their workforce for the future. 
Through a detailed analysis of current empirical research and a dive into trends from 
two independent market research studies, this chapter will offer evidence-based rec-
ommendations for integrating game-based assessments into the pre-hire and training 
processes, ultimately enhancing organizational effciency and effectiveness. 

https://doi.org/10.1201/9781032701639-4
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The rapid evolution of workplace automation has profound implications for how 
organizations recruit, assess, and develop their workforce. As automated systems 
become more sophisticated and widespread, organizations must adapt their talent 
acquisition and development strategies to effectively select, train, and retain employ-
ees to work alongside these technologies. Understanding the current state of work-
force automation provides a crucial context for examining how game-based tools can 
support these organizational objectives. 

AN INCREASINGLY AUTOMATED WORKFORCE 

As organizations adapt to rapid technological advancement, the integration of 
automation and AI has emerged as a transformative force across industries. This 
technological evolution has particularly signifcant implications for workforce devel-
opment, recruitment strategies, and skill requirements in both the military and civil-
ian sectors. Recent analyses indicate substantial shifts in job roles and organizational 
structures as AI capabilities expand, warranting careful examination of these devel-
opments and their implications for future workforce planning. 

The increasing role of automation and AI in the workplace is evident from recent 
survey data. A recent market research study from Adaptive Immersion (one of two 
that will be discussed within this chapter) with data collected from participants on 
Amazon’s Mechanical Turk found that 81.90% of respondents reported utilizing auto-
mated systems (AI, robotics, etc.) to perform their job functions (Mangos & Ferraro, 
2021). Looking more closely at the nature of their work, 51.43% of respondents reported 
currently using AI/ML in their day-to-day operations. While not a comment on how 
AI/ML is being applied in the workplace, this number further emphasizes the shift in 
how modern work is performed. This number is expected to grow, with projections 
indicating that 60.95% of respondents reported that they expect to use AI/ML within 
the next year, 73.33% within the next fve years, and 68.57% within the next ten years 
(an admittedly harder projection to forecast), as seen in Figure 4.1. 

These statistics underscore the pervasive integration of AI and automation in 
the workplace, highlighting the need for effective human-automation interaction. 
As AI and automation become more embedded in daily operations, the ability to 
work seamlessly with these technologies will be crucial for organizational success 
(Autor, 2015). 

CHALLENGES INTERACTING WITH AI AND AUTOMATION 

Effective human-automation interaction is critical to maximizing the benefts 
of AI and automation in the workplace while minimizing potential drawbacks. 
Parasuraman and Riley (1997) identifed the possible misuse, disuse, and abuse of 
automation as signifcant concerns. Described frequently in human factors’ litera-
ture, these three concepts represent the possible ways in which automated systems 
may be utilized to not result in optimal system performance. 

• Misuse: The tendency to rely too heavily on the performance of automated 
systems or AI. Overestimating its capabilities and failing to effectively 
attend to the system and correct errors. 
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FIGURE 4.1 Market trends in organizations integrating AI/ML into day-to-day operations. 

• Disuse: The tendency to not utilize automated systems or AI in the context 
in which they are intended. This results in a failure to see the full potential 
of the system. 

• Abuse: Deploying automated systems or AI to take on tasks without consid-
ering the impact on the human or the system. 

We believe these aspects of human-automation use, frst addressed nearly 30 years 
ago, will continue to pervade human-machine systems as the technology evolves and 
expectations of the user become less predictable. Market research analyses suggest 
that this may be the case, with more than half of all respondents reporting hav-
ing experienced or witnessed human performance issues when interacting with 
automation/AI (Mangos & Ferraro, 2021). The results of this market research study 
revealed interesting trends in the types of issues that were identifed as most com-
monly experienced or witnessed in high-tech felds. With many of these tools still 
admittedly in their infancy relative to traditional methods of performing tasks, either 
manually or with simpler technologies, it is interesting to see that automated systems 
and AI tend to be underutilized in the workplace. Over one in three survey participants 
felt that co-workers tend to underestimate the capabilities of automation and/or AI. 

Respondents were asked to identify some of the human factors and performance 
issues they have witnessed in their workplace. Specifcally, they were asked whether 
they have seen problems related to situation awareness, workload management, 
overreliance on the technology, underutilization of the technology, or boredom with 
new hires to high-tech positions. These can all be considered symptoms (or direct 
examples) of automation misuse, disuse, or abuse. The results, shown graphically 
below, suggest a seemingly clear trend in how automation and AI are being used and 
adopted by new employees. 

Over half of the participants have seen issues related to the division of labor 
between automation and themselves, balancing workload as they work in tandem 
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FIGURE 4.2 Market analysis of reported human factors issues interacting with AI and 

with technology to complete tasks. Similarly, over half of the participants reported 
that automation and AI are underutilized in the workplace. Meanwhile, as it pertains 
to situation awareness, overreliance, and boredom, a much smaller group of partici-
pants reported witnessing these issues, as seen in Figure 4.2. 

This general trend indicates that automated tools and AI are not being suffciently 
utilized, leading to potential ineffciencies and missed opportunities (Endsley, 2017; 
Parasuraman & Riley, 1997). Over half of the respondents have observed issues 

automation, including situation awareness (a), workload management (b), overreliance (c),  
under-utilization (d), and boredom (e). 
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related to the division of labor between automation and themselves, as well as chal-
lenges in balancing workloads. This underutilization of automation and AI in the 
workplace highlights the need for better training and assessment methods to ensure 
employees can effectively collaborate with these technologies (Hoff & Bashir, 2015). 

The prevalence of automation misuse, disuse, and abuse in the workplace points 
to a critical need for more effective methods of evaluating and developing employees’ 
capabilities to work with automated systems. Traditional assessment and training 
approaches often fall short in preparing workers for the complexities of human-
automation interaction. Game-based assessment tools offer a promising solution to 
these challenges by providing immersive, realistic environments where candidates 
can demonstrate their ability to effectively collaborate with automated systems while 
organizations can evaluate their potential performance. 

GAME-BASED ASSESSMENT AS A SOLUTION 

Recruiting and assessing candidates for roles involving automated systems present 
unique challenges. Hiring managers aim to identify and prepare the most qualifed 
candidates, often needing to sift through hundreds to thousands of resumes and per-
sonal statements to make these decisions. To accelerate this process, automated sys-
tems and even AI have been integrated into the pre-hire assessment process, weeding 
out applicants who do not meet certain criteria in the eyes of the system. This may 
speed up the process, but it is a far from perfect method of identifying the most 
qualifed candidates for a job. Organizations should constantly aim to improve their 
pre-hire assessment process, and there may be an opportunity to integrate game-
based assessments to address some of the shortcomings that exist. Game-based 
assessments could offer a solution by providing a more interactive and engaging way 
to evaluate these skills (Shute & Ventura, 2013). 

Game-based assessments and serious games represent a promising approach to 
addressing the challenges of recruiting and training for roles involving AI and auto-
mated systems. Despite the potential benefts, market research revealed that 63.11% 
of workers reported not using game-based assessments in their current processes 
(Mangos & Ferraro, 2021). This presents an opportunity for organizations to adopt 
innovative assessment methods that can better evaluate candidates’ abilities to work 
with AI and automation and effectively recruit the highest level of talent. Game-
based assessments can simulate real-world scenarios, allowing candidates to dem-
onstrate their skills in a controlled environment. This approach can provide valuable 
insights into how individuals interact with automated systems, identify areas for 
improvement, and ensure that new hires are well-equipped to handle the demands of 
their roles (Gee, 2003). 

Research strongly supports an increased usage of entertainment video games for 
training and recruiting purposes. For instance, the game America’s Army, developed 
in 2002, has since been played by more than 15 million individuals and evaluated as 
one of the most effective recruitment tools for the Army (Edery & Mollick, 2008). 
A market research survey revealed that 30% of Americans aged 16–24 had a more 
positive impression of the Army because of the game, and the game had more impact 
than all other forms of Army advertising combined. 
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ATTRACTION TO GAME-BASED TOOLS 

Adaptive Immersion completed an independent market research study to gain feed-
back on the potential for game-based tools for pre-hiring assessment from individu-
als representing potential recruits for NASA, DoD, IC, and STEM industry-related 
felds. This survey targeted individuals in the current labor market closely resem-
bling the demographics recruits for these industries. The purpose of the market 
analysis survey was to measure the propensity of these individuals to engage in a 
game-based assessment process for hiring, on-the-job learning, and career advance-
ment in the target career felds. The key fndings of the market analysis survey are 
as follows: 

• Overall, 82.5% report a strong propensity (M = 4.27 on a 1–5 scale) to apply 
to a job that includes a game component. 

• Respondents with a strong background in STEM felds are willing to put 
more time (M = 3.74) into completing a game-based application than a tra-
ditional pen-and-paper application. 

• Respondents with a strong background in STEM felds report strong agree-
ment (M = 3.97) that a game-based application would be an effective 
recruiting method. 

• Respondents with a strong background in STEM felds are more likely 
(M = 3.66) to persist on the application even when embedded game chal-
lenges became more diffcult. 

In an age where tech organizations are in competition to identify and recruit top 
talent, this information can prove to be invaluable to improving the capabilities of 
their workforce. An example of this method being applied took place in 2016, when 
the company Unilever revamped its hiring process, utilizing a series of neuroscience-
based games to identify quality candidates (Feloni, 2017; Wilson et al., 2018). 
Candidates were measured on their ability to perform well in these games before 
advancing to a video-based interview with an automated system. After one year of 
transitioning to this new hiring method, incorporating the game-based assessment 
as an initial barrier to the interview process, candidates began applying from over 
2,500 universities, up from almost 850. Additionally, the acceptance rate of offers 
extended to applicants rose from 64% to 82%, suggesting that applicants left the pre-
hire process with a positive impression of the company and a desire to work there. 

Deploying game-based assessments for training, recruiting, and assessing a pre-
hire’s cognitive abilities has several advantages. In the pre-hire process, they tend to 
be far less intimidating than traditionally administered ability tests. This can reduce 
test anxiety and better capture applicant performance. It also makes the application 
process less cumbersome, creating a positive mental image of the organization in 
the eyes of the applicant. In both pre-hire and the training processes, a game-based 
element can help drive engagement and immersion in the task, enhancing motivation 
and even encouraging applicants to continue in the application process. 

Training for highly automated jobs can also beneft from the use of game-
based methods of evaluating and measuring performance. Research has found that 
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game-based training can be applied in various STEM domains, such as healthcare 
and transportation, to improve performance in highly specialized tasks. In 2019, 
researchers examined the use of virtual reality (VR) serious games for training driv-
ers’ interactions with highly automated vehicles (Ebnali et al., 2020. The use of 
the game-based VR trainer resulted in faster reaction times in takeover scenarios 
and fewer overall collisions in future scenarios. Notably, additional results also sug-
gested improvements in trust and acceptance of the automated driving technology. 
Similarly, there have been observed differences in overall self-effcacy in perform-
ing essential healthcare tasks such as chemotherapy preparation using game-based 
training methods (Garnier et al., 2024). This provides evidence that game-based 
training with highly automated systems can assist in changing attitudes toward the 
system or about the trainee’s performance and potentially support more rapid adop-
tion of new technologies. 

When considered within the context provided earlier in this chapter, it is sug-
gested that more common performance issues with these systems, including unde-
rutilization and applying game-based training for new hires, may help in getting 
the most out of the available automated systems. It can identify and even infuence 
attitudes toward highly automated systems (e.g., self-driving cars) and help enhance 
performance in human-machine teaming tasks. Adaptive Immersion’s market 
research study revealed that while over 60% of respondents stated their organization 
does not currently utilize game-based methods of evaluating performance, nearly 
half (47.57%) indicated that they would be likely to use one in the future. Almost one 
in three participants reported that they felt a game-based assessment tool aimed at 
evaluating human-automation interaction would be useful. 

The strong attraction to game-based assessment tools among potential candi-
dates, particularly in STEM felds, has led organizations to examine how these tools 
compare to traditional evaluation methods. Understanding the relative strengths and 
limitations of game-based assessments versus conventional approaches is crucial for 
organizations seeking to optimize their talent acquisition processes. Market research 
provides valuable insights into how different stakeholders perceive the comparative 
value of these assessment methods. 

PERCEIVED COMPARATIVE VALUE FOR CANDIDATE EVALUATION 

The benefts of game-based pre-hire and training assessment tools described above 
can be applied as standalone assessments or, as Unilever deployed them, as a barrier 
somewhere within the hiring process. Game-based methods of evaluating a candi-
date for a job may elevate the quality of that evaluation. Market research has shown 
that a majority of surveyed workers feel that a game-based assessment may be more 
valuable to the hiring process than other traditional methods (Mangos & Ferraro, 
2021). Summarized below are several of the more commonly used and traditional 
pre-hire talent assessment and acquisition tools. 

• Prior Experience/Knowledge: Evaluations based on years of experience in 
a particular feld or relevant experience in a related feld. 
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• Candidate Interview: A face-to-face or virtual conversation with the appli-
cant wherein they are asked job-specifc questions by a hiring manager or 
employee in their desired position. 

• Personality Assessment: Evaluate the overall ft of an applicant into an orga-
nization’s culture and assess how likely they are to stick around long-term. 

• Cognitive Skill Assessment: Evaluate the underlying abilities that can 
reveal performance in key performance areas such as decision-making and 
judgment. 

Market analysis suggests that the perception of game-based assessments is more 
positive generally than many of these alternatives (Mangos & Ferraro, 2021). For 
example, 61.76% of respondents reported that a game-based assessment would be more 
valuable to their hiring process than a personality assessment. Additionally, 56.31% of 
respondents reported that a game-based assessment would be more valuable to their 
hiring process than based solely on previous knowledge or experience. Finally, nearly 
two-thirds (66.02%) of respondents reported that a game-based assessment would be 
more valuable to their hiring process than a non-game-based cognitive skill assess-
ment alternative. The positive perception, both in engaging new hires and in evaluating 
applicants, suggests that game-based tools should be more prevalent than they seem to 
be. Empirical research into how these tools are being used and how effective they are 
indicates that researchers are paying more attention to this emerging trend. 

RESEARCH TRENDS IN GAME-BASED ASSESSMENT FOR HIGHLY AUTOMATED DOMAINS 

In addition to examining market trends in how game-based tools are used for pre-
hire assessment and training, Adaptive Immersion performed an empirical trend 
analysis of published research in game-based assessment, selection, and recruiting. 
Utilizing the Web of Science online database to identify relevant articles published 
between 2000 and 2024, the search criteria were designed to capture publications 
that included one of the following terms in either the title, abstract, or keywords: 
“Game-based assessment,” “Game-based selection,” or “Game-based recruiting.” 
This approach facilitated a comprehensive examination of research trends in game-
based assessment, selection, and recruiting spanning nearly two and a half decades. 

By focusing on peer-reviewed articles, conference proceedings, and scholarly book 
chapters, the study aimed to maintain a high standard of academic rigor. The inclu-
sion of early access articles allowed for the consideration of cutting-edge research 
that may not yet have been formally published but has undergone initial peer review. 
The trend analysis revealed signifcant growth and evolution in research develop-
ment in game-based assessment, selection, and recruiting from 2000 to 2024. The 
total number of publications meeting the criteria was 415, encompassing a mix of 
articles, proceeding papers, review articles, book chapters, and early access articles. 

Temporal trends demonstrated a clear upward trajectory in publication numbers. 
The 2000s decade from 2000 to 2009 saw 16 publications, followed by a substantial 
increase to 203 publications in the 2010s decade from 2010 to 2019. The feld main-
tained strong momentum into the early 2020s, with 196 publications from 2020 to 
2024, as seen in Figure 4.3. 
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FIGURE 4.3 Annual trends in research into game-based tools for selection, assessment, 
and recruiting. 

Furthermore, the analysis of publication trends reveals a remarkable acceleration 
in research output within the domains of game-based assessment and selection. This 
current decade, despite being only in its initial phase, has already produced a volume 
of research nearly equivalent to that of the entire preceding decade. This phenom-
enon is elucidated in Figure 4.4, which illustrates the mean annual publication rate 
across three distinct periods of publication. 

The application domains represented in the publications underscore the inter-
disciplinary nature of game-based assessment and selection research. Education 
Research led with 188 publications (45.4%), followed by Computer Science with 150 
publications (36.2%). Psychology and Engineering also showed signifcant contri-
butions, with 59 (14.3%) and 56 (13.5%) publications, respectively. Other notable 
domains included Telecommunications, Business Economics, Social Sciences, 
Transportation, and various health-related felds. An interesting trend revealed that 
funding for this research came largely from military and governmental organizations. 

These entities supported 195 publications (47.1%), followed by academia fund-
ing 154 publications (37.2%). Non-proft organizations contributed to 55 publications 
(13.3%), while industry funding was limited to 11 publications (2.7%). In conclusion, 
this trend analysis reveals a rapidly growing and interdisciplinary feld of research 
in game-based assessment and selection. The exponential increase in publications is 
evident, with the average annual output doubling each decade from 1.6 publications 
per year in the 2000s to 20.3 in the 2010s and reaching 39.0 in the early 2020s, as 
seen in Figure 4.5. This trajectory suggests a continued expansion of the feld. 

The substantial growth in research attention to game-based assessment, particu-
larly in highly automated domains, refects the increasing recognition of these tools’ 
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FIGURE 4.4 Average research publications per decade in game-based selection, assess-
ment, and recruiting. 

potential value for organizations. This convergence of empirical evidence and practi-
cal application provides a foundation for identifying key trends and implications for 
the future of workforce development in automated environments. By synthesizing 
insights from both research literature and market analysis, we can derive actionable 
recommendations for organizations seeking to leverage game-based tools in their 
talent management strategies. 

FIGURE 4.5 Research funding breakdown for game-based tools. 
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KEY TRENDS AND TAKEAWAYS 

This chapter has summarized the current state of game-based tools used for pre-hire 
assessment and training, highlighting its perception as an effective method for deliv-
ering assessment material and identifying opportunities in STEM felds to apply the 
technology. The market research studies discussed above provide interesting insights 
into how new technologies, including AI, are being applied in the workplace. Despite 
the apparent proliferation of automated and AI features in the way work is performed 
(Mangos & Ferraro, 2021), the prevailing trend was that these systems are under-
utilized and their capabilities underestimated in the workplace (Mangos & Ferraro, 
2021). Due to the still nascent capabilities of modern AI systems and automation 
(e.g., natural language processing and deep learning) in the grand scope of technol-
ogy development, it is possible that a lack of exposure has engendered a lack of trust. 
There is likely a segment of the workforce that does not feel it necessary to utilize 
AI or new automated systems or features to do and/or assist with their work. Another 
segment does not want to appear ignorant of how to best utilize these automated 
systems and thus is hesitant to adopt them. 

We have presented above examples of how game-based tools for recruiting, assess-
ment, and training can help bring in the most qualifed workers and even help modify 
their attitudes toward automation and AI (Ebnali et al., 2020; Feloni, 2017; Mangos 
et al., 2020; Wilson et al., 2018). There appears to be an opportunity to expand upon 
the applications for the game-based methods of identifying and training top talent, 
particularly in STEM felds (Mangos & Ferraro, 2021). Empirical research trends 
suggest that these tools are gaining more attention in the scientifc community, and 
as evidence builds for their effcacy as recruiting and training methods, they may be 
adopted more commonly across industries. An emerging trend that may point to 
the direction of future research in this area is the number of funded projects spon-
sored by the government or military. Recruiting has long been a priority for the 
U.S. military, and presenting recruits with a more attractive platform for breaking 
into the armed forces may provide a boost to their numbers. 

GAMING FOR MILITARY AND COMMERCIAL STEM RECRUITING 

The intersection of gaming and military recruitment represents a critical evolution in 
talent acquisition strategies. Recent data demonstrates the strategic value of gaming 
platforms for military and STEM recruitment, with approximately 75% of active-
duty U.S. military personnel engaging with video games. This high engagement rate, 
particularly among younger service members, presents a compelling opportunity for 
recruitment initiatives. 

In the civilian sector, gaming engagement closely mirrors military participation 
rates. The Entertainment Software Association (2023) reports that 69% of Americans 
regularly participate in gaming activities, with frst-person shooter (FPS) games domi-
nating the market. These games comprise 42% of Steam’s Platinum-level Top Sellers 
in 2023, exemplifed by the Call of Duty franchise’s continued success (Steam, 2023). 
The launch of Modern Warfare II and Warzone attracted over 25 million players within 
just fve days, demonstrating the massive reach and infuence of gaming platforms. 
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While the pioneering military recruitment game “America’s Army” concluded 
its two-decade run in 2022, military branches have signifcantly evolved their dig-
ital recruitment strategies. The U.S. Navy now dedicates a substantial portion of 
its marketing budget to esports initiatives, investing up to $4.3 million annually in 
gaming-related recruitment efforts. The Army has strengthened its gaming pres-
ence by establishing the Army Gaming League, which connects service members 
through competitive gaming environments. Similarly, the Air Force has expanded its 
reach by sponsoring major esports tournaments and maintaining dedicated stream-
ing channels. Even the Space Force launched its “Space Force Gaming” initiative in 
2022 as an innovative approach to fostering recruitment and community building. 

The gaming-based recruitment model has expanded beyond military applications, 
fnding signifcant traction in commercial STEM sectors. Major technology compa-
nies have adopted gaming principles by hosting immersive coding competitions and 
hackathons that simulate real-world problem-solving scenarios. Defense contractors 
have integrated simulation-based assessment games into their hiring processes for 
technical roles, allowing candidates to demonstrate their skills in realistic environ-
ments. Cybersecurity frms have particularly embraced this approach, implementing 
capture-the-fag (CTF) competitions that effectively identify and evaluate talented 
security professionals. 

Looking toward the future, several emerging trends are reshaping the landscape 
of game-based recruitment. Organizations are increasingly willing to incorporate 
AI-powered assessment metrics within gaming environments, enabling more sophis-
ticated evaluation of candidates’ capabilities. VR training simulations are becom-
ing more prevalent for high-risk operations, allowing organizations safety when 
assessing performance in various challenging scenarios. The development of cross-
platform recruitment games has enabled organizations to evaluate both technical 
profciency and essential soft skills simultaneously. Additionally, organizations are 
implementing gamifed continuous learning platforms that support ongoing work-
force development and skill enhancement. 

These developments signal a signifcant shift toward more sophisticated, data-
driven approaches to game-based recruitment in military and commercial STEM sec-
tors. Organizations increasingly recognize gaming platforms as valid assessment tools 
that effectively evaluate candidates’ problem-solving abilities, team coordination, and 
technical aptitude in realistic scenarios. As technology evolves and gaming platforms 
become more sophisticated, the integration of game-based assessment tools in recruit-
ment and training processes is likely to become even more prevalent across industries. 
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INTRODUCTION 

Artifcial intelligence (AI) is a collective term encompassing broad-scale machine 
systems designed to simulate human cognitive processes in an attempt to produce 
decisions and actions on par or superior to those of human agents. Searle (1980) 
drew an important distinction between two key types of AI (weak and strong) 
that have critical philosophical impacts on the way such systems are designed, 
developed, and used. Weak AI envisions the machine as a powerful tool, one 
which naturally overcomes the resource-limited and structurally limited nature 
of humans to process information more effectively and effciently for the beneft 
of the human decision-maker or agent. Strong AI, however, entails the generation 
and growth of computer programs that inherently understand said information, 
learn from it, and make their own decisions and actions based upon it. Strong AI 
consequently is said to have its own mind, consciousness, and cognitive states 
that emulate but are not equivalent to those of humans; it is its own unique entity. 
While few individuals have made credible claims as to the existence of strong AI, 
weak AI not only exists but has already prolifcally permeated critical large-scale 
industries and applications throughout the world, including education (Nemorin 
et al., 2023), medicine (Kulkarni et al., 2020), fnance (Chen et al., 2023), law 
(Reiling, 2020), and climate advocacy and action (Stein, 2020). More recently, 
generative AI (e.g., ChatGPT) large language models (LLMs) have become popu-
lar for their ability to use natural language processing to respond to natural lan-
guage prompts and generate coherent text. Similarly, general adversarial (GAN) 
or diffusion models are able to generate images based on user prompts (Sætra, 
2023). 

AI is already making in-roads in terms of implementation in human performance 
measurement on the key fronts of interest: training, selection, and assessment, and 
generative AI promises to make these options more accessible (Budhwar et al., 
2023). While humans excel at complex decision-making, AI has not yet reached 
the point of being capable and effective at making decisions based on ambiguous 
or unevenly weighted information, which is often required in both assessment and 
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selection. In these cases, AI often provides support to a human for these critical 
decisions. As a result, explainability is necessary to be able to evaluate the AI’s 
recommendations and ensure that it does not provide that support based on faulty 
information or use inappropriate biases (as has occurred in the past with serious 
ethical implications). Moreover, in cases wherein AI is making those fnal decisions, 
it is even more important that the reasoning behind said decisions can be reviewed 
and evaluated appropriately. 

Hence, AI – and particularly those systems designed for human performance 
assessment – must be designed in a human user-centered manner. The AI is not auton-
omous and does not decide what goals it wants to achieve or the process by which to 
achieve them. The human user inputs their goal and/or directive, which can implicitly 
or explicitly set parameters on the process and results. Explainability and an effective 
user interface (UI) are therefore critical in the design, implementation, and evaluation 
of human performance assessment AI systems to prevent “garbage-in, garbage-out” 
scenarios that result in suboptimal and/or discriminatory decision-making that could 
have been more competently executed by a human alone (Weyerer & Langer, 2019). 

In essence, user-centered AI goes beyond mere convenience; it becomes a catalyst 
for human growth and development. It empowers individuals to perform at their best, 
offers personalized learning and training experiences, and provides objective assess-
ments while upholding principles of fairness and equity. As AI continues to integrate 
into various aspects of our lives, its user-centric approach becomes essential for real-
izing the full potential of AI as a tool for human advancement. 

To this end, this chapter specifcally examines Explainable Artifcial Intelligence 
(XAI), what it is; its importance to AI-supported human performance training, selec-
tion, and assessment; and the issues that need to be overcome to ensure its effective 
utility in these key application areas. One such issue of major focus is the subject of 
bias. We herein discuss the nature of bias, its ubiquitous infuence on human decision-
making, and how said biases may be inadvertently embedded in AI systems (and the 
dangers of pervasive beliefs that AI is inherently bias-free). Furthermore, we pro-
vide concrete examples of how different biases have already infltrated AI-informed 
decision support systems and the ensuing societal consequences. We also profess the 
critical and immediate need for the generation and implementation of standardized 
ethical guidelines for the design and use of XAI. We provide extensive descriptions 
and recommendations with regard to the current best practices and guides available 
for the designer and practitioner. Finally, we describe the largest challenges still facing 
user-centered XAI systems to guide future efforts for their improvement to promote 
and safeguard the desirable outcomes of ethical effectiveness, effciency, and safety 
of XAI-supported human performance training, selection, and assessment systems. 

WHAT IS EXPLAINABILITY? 

EXPLAINABILITY (XAI) 

With the rise in the complexity of AI applications, calls have been made to improve the 
quality of explanations provided by these systems. In interactions between humans, 
explanations are critical for communication because they provide reasonings and 
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justifcations for actions. To be useful to humans, the explanations provided by AI 
must be interpretable (Phillips et al., 2020). However, as algorithms do not “reason” 
in the same way that humans do, gleaning interpretable, meaningful explanations 
can be challenging (Lipton, 2018). The feld of machine learning (ML) explainability 
seeks to increase the interpretability of AI models. While recent progress has been 
made in the feld of AI explainability, many models are still opaque, meaning that 
they do not offer any insights into their algorithmic mechanisms (Doran et al., 2017). 
The system consequently remains a black box, which increases the chances of “gar-
bage in, garbage out” suboptimal performance. 

One burgeoning area in AI explainability, XAI, attempts to articulate the prob-
lem, converge on concepts, and provide tools and techniques to verify explainability 
(Ehsan et al., 2021). The EU Ethical Guidelines for Trustworthy Autonomy (2019) 
refer to explicability as one of the four ethical principles necessary for trustworthy 
AI, with the other three being (1) respect for human autonomy, (2) prevention of 
harm, and (3) fairness. Phillips et al. (2020) describe XAI using four principles in the 
National Institute of Standards and Technology (NIST) guidance: 

• The frst principle, explanation, is merely indicating that some explanation 
should be available – it does not speak to the correctness, informativeness, 
or intelligibility of said explanation. 

• The second principle, meaningfulness, refers to whether the intended audi-
ence can understand the explanation. This is necessarily based on an under-
standing of said audience (Hind, 2019). 

• Correctness of the explanation is prescribed in the third principle, expla-
nation accuracy. This concept is independent from explanation accuracy, 
which refers to whether the judgments made by the system are correct – this 
guideline refers only to the veracity of the explanations the system provides. 
This principle is similar to meaningfulness in that it is relative to the exper-
tise and needs of the audience receiving the explanation. 

• The fourth principle, knowledge limits, identifes where the system is and 
is not designed or approved to operate, or where the information it pro-
vides is likely to be unreliable. This principle is critical for trust as it 
prevents misleading outputs and supports ethical AI by preventing unjust 
outcomes by adhering guidelines based on known limitations. 

Transparency, which refers to a clear presentation of the inner workings of a sys-
tem (Lipton, 2018), is another consequential factor in XAI. Transparency is one of 
the eight general principles set out in the Institute for Electrical and Electronics 
Engineers (IEEE) Ethically Aligned Design: “The basis of a particular autono-
mous and intelligent system decision should always be discoverable” (Shahriari & 
Shahriari, 2017, p. 4). In an article summarizing the Defense Advanced Research 
Projects Agency (DARPA) XAI project, Gunning and Aha (2019) describe the need 
for both explainable models and explanatory interfaces to communicate with the 
user. In contrast to black-box models that do not provide insight into their algo-
rithmic mechanisms, XAI supports the evolution toward more transparent mod-
els, sometimes referred to as white- or glass-box models. Vilone and Longo (2021) 
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describe white-box models as self-explainable and interpretable. Moreover, Rai 
(2020) describes XAI as a method to turn the opaque, black-box models into glass-
box models that are transparent for inspection by humans. 

When considering transparency, it is important to acknowledge that it is not only 
a characteristic of the system – but a product of the human and machine together that 
occurs through interaction. For transparency to be achieved, the information must 
be understood by the user – this points to a complex interplay between transparency 
and interpretability. Transparency is therefore an emergent property that is a product 
of the human-automation system (Ososky et al., 2014). This concept of communi-
cating in a way the human user can interpret is widely considered a core purpose 
of XAI (Balasubramaniam et al., 2022). While these guiding principles need to be 
at the forefront of designers’ and practitioners’ minds, there are critical issues cur-
rently hampering the systems’ ability to manifest these key constructs through user-
centered design. It is to these imperative concerns that we now turn our focus. 

ISSUES WITH XAI 

While XAI can certainly improve the human-interpretability aspects of AI, it 
brings its own concerns. Technical complexity, making ML algorithms trans-
parent to adversaries, and trust calibration are all issues associated with XAI. 
Technical complexity is often described as a barrier to XAI as users often lack 
the technical expertise to understand the complex coding used to develop the sys-
tems; and while XAI seeks to address this issue, many of the methods currently 
available to operationalize XAI are too technical for most users and stakeholders 
to fully understand (Bhatt et al., 2020). These authors recommend deeply under-
standing the intended user audience in question so that explanations and methods 
can be tailored to their specifc needs. Lipton (2018) discusses how despite a lack 
of a clear defnition for interpretability, a growing body of literature has proposed 
developing algorithms that are interpretable. However, providing a clear defni-
tion of interpretability is a challenging proposition considering the diversity of 
defnitions and ideas surrounding the concept. 

Other issues associated with XAI concepts involve the proposition to use XAI as a 
means of increasing trust, which is not necessarily a desirable outcome. Importantly, 
human trust in ML applications should not be envisioned as a simple dichotomy 
where the user does or does not trust the system. Whether or not a human user 
should trust a system depends not only on how the system behaves, but also how 
the system should behave and how the system communicates with the user. That is 
to say, the goal is not necessarily for the human user to trust the ML application as 
much as possible, but that the human user trusts the ML application appropriately in 
accordance with its capabilities – a concept known as trust calibration (Lee & See, 
2004). Moreover, presenting more information does not necessarily lead to more 
trust. For instance, Cheng et al. (2019) provided interactive explanations that aided 
users’ understanding of an ML algorithm, but it did not lead to an increase in trust. 
This result may be because explainability is only one factor infuencing trust in AI, 
and other factors, such as resiliency, reliability, bias, and accountability (Philips et. 
al., 2020), may weigh more heavily on the users’ trust perceptions. Poor outcomes 
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may be also due to properly calibrated trust (e.g., the system should not be trusted 
and as the user understands the system, they appropriately place a lower amount of 
trust in it). 

Risks also arise from the desire for transparency. One risk of implementing trans-
parent AI systems is the likelihood of successful adversarial attacks. Making the 
inner workings of a model more accessible leaves that model more vulnerable to 
bad actors, who may leverage the explanation to compromise the system (Kuppa 
& Le-Khac, 2021). Similarly, companies publishing transparent models risk losing 
their competitive advantage by sharing potentially privileged information or infor-
mation that can be replicated (Burrell, 2016). 

These concerns are all central to AI’s functioning, implementation, and secu-
rity. However, another critical consideration that is fundamental to the operation 
of these systems is bias. Proponents proselytize that one of the major reasons 
to implement AI at all is because it will eradicate the bias that so often affects 
decision-making in humans. The assumption is that you cannot have human 
biases in a non-human decision-maker. We now discuss the nature of bias in both 
humans and AI, and confront the extent to which this claim of “bias-free” AI 
decision-making is true. 

BIAS 

WHAT IS BIAS? 

Bias refers to a “systematic difference in treatment of certain objects, people, or 
groups in comparison to others” (International Organization for Standardization, 
2021, p. 1) This concept is relevant to both human behavior and AI development. 
Biases in human behavior impact the data used in ML models, which can also be 
impacted by statistical biases. 

and Kahneman in the 1970s, referred to systematic, but potentially fawed behavioral 
patterns (Wilke & Mata, 2012). Rather than using objective input, humans often 
rely on their own individual construction of reality to guide their responses. Human 
biases may be recognized (explicit) or unrecognized (implicit). While explicit biases 
may be controlled with effort, implicit biases are more complicated because they 
are not consciously recognized. As these implicit biases are not consciously rec-
ognized, they are challenging to measure or quantify. While one test, the Implicit 
Associations Test (IAT) claims to use response times to stimuli as a quantifed mea-
sure of implicit attitudes (Greenwald et al., 1998), some scientists feel there is insuf-
fcient evidence for their claims (Schimmack, 2021), potentially complicating the 
construct of implicit bias. 

Tversky and Kahneman (1974) described the gap between rational choices and 
observed human judgments as cognitive bias. Heuristics, which are mental shortcuts 
based on previous experience that support fast decision-making, play an important 
role in human judgments. However, these heuristics can and often do lead to errors. 

When discussing bias in humans, we are generally referring to unfair or even prej-
udicial thinking. However, the domain of cognitive biases examines the cognitive 
processes involved with human biases more deeply. This term, coined by Tversky 
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While many individuals assume ML models are objective, data for those models 
come from the real world and are impacted by human biases. Google’s Crash Course 
in ML describes the following biases that impact ML algorithms: 

• Reporting bias: Frequencies represented in data do not refect real-world 
frequencies. 

• Automation bias: Tendency to favor results from automated systems over 
result from non-automated systems. 

• Selection bias: Sample not refective of the real-world distribution. 
• Group attribution bias: Tendency to generalize observations made about 

individuals to an entire group. 
• Implicit bias: Assumptions made based on personal experience rather than 

real-world information. 

While this is a relatively short sample of the long list of known human biases, it 
demonstrates the potential impact of those biases on ML. 

DEVELOPERS/USERS MAY FALSELY BELIEVE AI GETS RID OF BIAS 

Developers and users may believe that the use of AI in assessments helps to elim-
inate bias. However, Manyika et al. (2019) provide several examples of how sys-
tems developed to remove bias in assessment failed to do so. They provide several 
cases in which criminal justice algorithms, hiring algorithms, and facial recogni-
tion technologies – that were each designed to unbiasedly assist in assessment and 
decision-making – resulted instead in hurting and discriminating against already 
marginalized groups. These technologies were developed with the intent that they 
would remove the human bias by having an algorithm make an impartial decision; 
however, each system suffered from a dearth of training data to properly represent 
all of the populations it would be requested to judge. 

INPUT MATTERS, GARBAGE IN, GARBAGE OUT, AND SYSTEM PARAMETERS 

A lack of training data is not the only issue. Specifcally, we can see that training data 
itself input into the AI matters (Jelly, 2023). Weyerer and Langer (2019) point out that 
AI developed leveraging bad inputs causes those negative outcomes to propagate 
throughout the AI lifecycle. This practice can cause perpetual harm as the result-
ing assessments are often fed back into this cycle. Furthermore, humans are often 
charged with placing parameters on these AI systems. People can be quite unaware 
of their lack of knowledge in an area. Though developers may behave altruistically 
while creating an AI for the assessment of humans, they may be missing one or more 
large pieces of information needed to build this system without bias. Maniyka et al. 
(2019) pointed out one such example, the Amazon hiring algorithm was halted when 
it was discovered that it preferred applicants that used specifc verbs like “executed.” 
It is clear to most individuals that virtually no one would expect such an innocuous 
word – used to describe completing a task – or other similar style words would cause 
bias, but that was the exact result. 
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ETHICAL STANDARDS MUST BE BUILT 

GUARDRAILS ARE NEEDED FOR DESIGNERS AND POLICYMAKERS 

There are several mitigation opportunities for the disastrous results indicated in 
the example above that can be considered throughout not only the design process 
but in policy making as well. We recommend that policy makers and designers 
start to develop their guardrails beginning with lowest level of their automation 
and continue throughout the highest level (Parasuraman et al., 2000). However, 
we also recognize that there are challenges to overcome due to the unique nature 
of AI technology. 

INPUT THESE GUARDRAILS THROUGHOUT THE PROCESS 

AND INTO THE STAGES OF AUTOMATION 

The development of AI is unlike the development of any previous new technology, 
particularly regarding the question of ethics. There are a few reasons for this, and 
those reasons combined are resulting in the exploration of uncharted legislative ter-
ritory, from both a development and usage standpoint, across a myriad of felds and 
disciplines. 

One of the stark differences in the advancement of AI is in the inability for gov-
ernmental agencies to apply limitations or moratoria on the direction or rate of 
progress regarding the technology. To date, government agencies have been unable 
to properly defne what specifcally constitutes AI, what forms of the technology 
will be covered under what not-yet-written legal statutes, and who would be covered 
under those legal protections (Hacker et al., 2023). In other areas of technological 
innovation when the question of the ethics of the technology is a cause for concern, 
it is possible to halt or delay the progress of development until either the experts in 
the feld, or unfortunately more commonly, political authorities have the opportu-
nity to weigh in. This trend has been the case in the sphere of stem cell research 
starting in the 1970s, with various countries around the globe halting research to 
have only some countries begin to allow the research to take place with numerous 
restrictions in place (Hughes, 2021). This type of pause is meant to ensure careful, 
effective, and ethical progress toward these desirable scientifc and societal goals. 
However, such a moratorium is not feasible in the realm of AI as all the necessary 
equipment and knowledge to successfully engage in the exploration of AI is widely 
and readily available to the general public. There is no need for advanced educa-
tion in a specifc domain area; in fact, as the demand for a technologically skilled 
workforce increases, a signifcant number of programmers are self-taught, learning 
through various online resources (Shen, 2020). Additionally, there is no need for 
expensive laboratory set-ups or specialized equipment as all that is required is access 
to computers and the software to run them. So, with the inability to completely and 
effectively regulate the advancement of AI, and which individuals or entities are 
involved in the processes, how does the structure of a system of ethics even begin 
to be applied? Who would be the regulatory body to apply that system of ethics and 
from what culture or society should that regulatory body be informed? It quickly 
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becomes clear that there are no clear-cut answers to these questions and, at this point 
in time, no obvious path to a solution. 

On top of all the issues in the ethical development of AI, it then becomes a ques-
tion of how the usage of AI will, across the numerous disciplines in which it is 
applicable and potentially useful, be moral or fair. There are several areas where the 
use of AI is already questionable (as we discussed at length in an earlier section), and 
that number is steadily growing. In the feld of art, for example, AI has been utilized 
to expand and explore the artistic vision in a variety of media allowing for increased 
creativity and expression, but the concern remains, what happens when the AI learns 
to approximate human inventiveness just enough that the human becomes irrelevant 
to the monetary exchange for paintings, sculptures, or music (Roose, 2022)? Will 
humanity, or the output of AI productivity, get to the point where the ability to distin-
guish the difference between the two is lost (Demmer et al., 2023)? Are artists who 
put their work out into the world unintentionally training the AI that will replace 
them? Another form of protected intellectual property at potential risk is the creative 
forces at work in advertisement. What will be the impact of the use of AI on graphic 
designers, people who are an integral component of the advertisement world where 
the proft margin is of utmost importance (Engawi et al., 2021)? Just recently the pro-
tections for content creation were won as part of a larger deal that screenwriters in 
Hollywood negotiated with studios in which AI use must be disclosed and AI cannot 
be credited with manuscript creation (Coyle, 2023). The rise of generative AI further 
complicates the issues of creative license. 

It is not just in the worlds of art and entertainment that the use of AI has the 
potential to be of great beneft, as well as signifcant harm. In the practice of law, 
work is still being done to properly defne AI and describe how, where, and when that 
forthcoming legal defnition will be applied (Schuett, 2019). Additionally, there is an 
effort to utilize AI to mitigate discrimination, but without a clear understanding of 
how AI can appropriately be applied to the law, the ethics of this issue are becoming 
increasingly murky (Miller, 2020). 

In law enforcement, the ethical considerations become even more consequen-
tial for society as AI is used ostensibly to reduce racial and socioeconomic biases. 
However, the AI system used must be programmed, it must learn and be trained to 
look for patterns to identify potential crimes being perpetrated, but who is doing that 
programming other than fawed and racially biased humans (Berk, 2021)? 

Another serious area of concern is the use of AI in academia. As students turn 
to available forms of AI, such as ChatGPT, to complete homework assignments or 
take tests, the risk to academic integrity increases. Are the institutions of higher 
education conferring degrees on individuals that are under educated and under 
skilled to enter the job market in their respective felds, creating a defcient work 
force (Eke, 2023)? There is suffcient cause for concern across the many disci-
plines in which AI is currently being tested or utilized but that does not mean that 
AI has no place in the workplace or in education. However, it does require that 
our global society works cooperatively to develop and place a set of guidelines 
designed to hold the use of AI to an ethical standard. We now discuss the best 
nascent efforts to establish and implement guidelines for the ethical design and 
use of AI systems. 
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STATE OF PRESENT BEST PRACTICES 

GUIDES FOR AI ETHICS 

There is currently a call in the technology industry to adhere to guidelines related 
to ethical AI development. President Joe Biden stated “We must be clear-eyed 
and vigilant about the threats emerging from emerging technologies that can 
pose — don’t have to but can pose — to our democracy and our values,” during an 
announcement that seven leading AI companies in the United States had agreed 
to implement voluntary safeguards on the development of AI technology, includ-
ing “security testing, in part by independent experts; research on bias and privacy 
concerns; information sharing about risks with governments and other organiza-
tions; development of tools to fght societal challenges like climate change; and 
transparency measures to identify A.I.-generated material” (Shear et al., 2023, 
para. 11). 

While this agreement clearly highlights the importance of ethics in AI devel-
opment and the commitment of these companies to consider ethics during this 
process, the agreements here are somewhat vague. Lack of specifcity is one of 
the issues identifed and stressed in recent criticisms of AI guidelines. As Wei 
and Zhou (2022) observe, though “governments and corporations have curated 
multiple AI ethics guidelines to curb unethical behavior of AI, the effect has 
been limited, probably due to the vagueness of the guidelines” (p. 1). In a scath-
ing description of the plethora of AI guidelines released in recent years, Munn 
(2023) describe meaningless (e.g., vague, abstract, and incoherent), isolated (e.g., 
lacking social and cultural context), and toothless (e.g., lacking enforcement or 
consequences) principles that divert resources from more effective outcomes. 
AlgorithmWatch (2020) also questioned whether unenforceable guidelines were 
indeed better than having no guidelines at all after compiling over 160 guide-
lines into a searchable inventory. They reported fnding vague formulations and 
a lack of enforcement mechanisms, as well as a limited perspective emanating 
mainly from Europe and the United States. Development of guidelines by self-
interested parties is also a concern mentioned, indicating that these guidelines 
should be “more than a PR tool for companies and governments” (para. 6). In 
the same vein, McMillan and Brown (2019) warn of “ethics washing,” which 
criticizes guidelines development for potentially “diluting our rights in practice, 
and downplaying the role of our own self-interest” (p. 1), often developed for 
the goal of avoiding regulation and manipulating public opinion. Inadequate or 
faulty guidelines can also lead to “ethical debt,” wherein AI systems are devel-
oped under the presumption that the AI solution itself is ethical. As the develop-
ment focus is on effciency and there are often no viable means to address, or 
even realize the ethical issues, harmful consequences manifest and then must be 
mitigated (Dorton et al., 2023). 

To begin to address some of these issues, Wei and Zhou (2022) evaluated real-
world complaints from the AI Incident Database, a catalogue of repetitive AI failures. 
They created a taxonomy using 150 incidents occurring from 2010 to 2021 that they 
classify into eight categories: inappropriate use (bad performance), racial discrimi-
nation, physical safety, unfair algorithm (evaluation), gender discrimination, privacy, 
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unethical use (illegal use), and mental health. The number one issue they identi-
fed was transparency, followed by justice and fairness, and fnally non-malefcence, 
relating to security, safety, harm, and protection. While these three categories align 
well with the many of the published guidelines on Ethical AI, these authors suggest 
their taxonomy moves the issues from the vague theoretical realm into practical, 
concrete terms by describing the consequences of non-compliance with guidelines. 

While imperfect, ethical guidelines for AI development may still be useful 
resources for companies, developers, and anyone wanting to understand the ethical 
implications of AI development. As mentioned above, there are many guidelines and 
describing them all is beyond the scope of this chapter, but some of the more promi-
nent guidance is described below, including: 

• European Commission (EC) Ethics Guidelines for Trustworthy AI 
• Google Responsible AI Practices 
• Institute of Electrical and Electronics Engineers (IEEE) AI Ethics and 

Governance Standards 
• International Business Machines (IBM) AI Ethics Guide 
• United Nations Educational, Scientifc and Cultural Organization (UNESCO) 

Ethics of AI 
• United States Department of Defense (US DoD) Ethical Principles for 

AI 
• United States Intelligence Community (USIC) Principles of AI Ethics and 

Framework for the Intelligence Community 

Table 5.1 summarizes these guides in terms of their purpose, the concerns they 
address, and what they require, recommend, or provide. 

While these standards vary widely in scope, purpose, and detail, some com-
monalities can be observed. Nearly all of the guidance listed here mentions trans-
parency, interpretability, or explainability. Many also describe the importance of 
protecting humans, the role of the human, or the implementation of a human-
centered design approach, highlighting the importance of AI as a tool for human 
use. To ensure said tool functions as intended (and as effectively as possible), we 
now turn to the largest challenges currently affecting the design, use, and imple-
mentation of XAI systems intended to improve human training, selection, and 
assessment. 

BIGGEST CHALLENGES TO OVERCOME PERTAINING TO HUMAN 
PERFORMANCE, ASSESSMENT, TRAINING, AND SELECTION 

Though the temptation to leverage AI in human assessment is strong, the moral 
and ethical implications of doing so without consideration of the challenges this 
introduces are grave. Specifcally, there are multiple challenges associated with the 
proper development of user-centered AI technologies in the assessment of others 
(e.g., to select the best performer), as well as in the assessment of one’s self for per-
sonal consumption (e.g., ftness trackers). First, let us distinguish between the focus 



  
 
 

 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 

 
 

 

 
 
 
 
 
 
 

 
 

 

 
 
 

88 TABLE 5.1 
Guides for Ethical AI 

Guideline 
European Commission 
(EC) Ethics Guidelines 
for Trustworthy AI 

Source 
European 
Commission, 
2019 

Purpose(s) 
This guide serves to guide 
development, deployment, and 
use of AI 

Concern(s) 
Addressed 

Respect for human 
autonomy, 
prevention of 
harm, fairness 
and explicability 

Google Responsible AI 
Practices 

Google, 2023 Provides general 
recommendations for AI design, 
as well as specifc guidance on 
fairness, interpretability, 
privacy, and safety 

General 

Google Responsible AI 
Practices 

Google, 2023 Provides general recommenda-
tions for AI design, as well as 
specifc guidance on fairness, 
interpretability, privacy, and 
safety 

Interpretability 

Google Responsible AI 
Practices 

Google, 2023 Provides general recommenda-
tions for AI design, as well as 
specifc guidance on fairness, 
interpretability, privacy, and 
safety 

Privacy 

Requirements, Recommendations, or Provisions 
• Human agency and oversight 
• Technical robustness and safety 
• Privacy and data governance 
• Transparency 
• Diversity, non-discrimination and fairness 
• Environmental and societal well-being 
• Accountability 

• Use a human-centered design approach 
• Identify multiple metrics to assess training and monitoring 
• When possible, directly examine your raw data 
• Understand the limitations of your dataset and model 
• Test, Test, Test 
• Continue to monitor and update the system after deployment 

• Plan out your options to pursue interpretability 
• Treat interpretability as a core part of the user experience 
• Design the model to be interpretable 
• Choose metrics to refect the end-goal and the end-task 
• Understand the trained model 
• Communicate explanations to model users 
• Test, Test, Test 

• Collect and handle data responsibly 
• Leverage on-device processing where appropriate 
• Appropriately safeguard the privacy of ML models 
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Google Responsible AI 
Practices 

IEEE Recommended 
Practice for Assessing 
the Impact of 
Autonomous and 
Intelligent Systems on 
Human Well-Being 
7010-2020 

IEEE Standard for 
Transparency of 
Autonomous Systems 
7001-2021 

IEEE Standard Model 
Process for Addressing 
Ethical Concerns 
during System Design 
7000-2021 

International Business 
Machines (IBM) AI 
Ethics Guide 

Google, 2023 

IEEE, 2020 

IEEE, 2021a 

IEEE, 2021b 

IBM, 2023 

Provides general recommenda-
tions for AI design, as well as 
specifc guidance on fairness, 
interpretability, privacy, and 
safety 

Envisioned to help developers 
incorporate human-centric 
design principles and raise 
awareness of ethical issues 

Focuses on the objective 
assessment of transparency, to 
operationalize the necessity of 
users understanding how and 
why AI makes decisions 

Provides processes that support 
consideration of ethical values 
during concept exploration 
and development through 
stakeholder engagement 

AI guide to ethics for data 
scientists and researchers 
to support ethical AI 
development to beneft the 
greater society 

Security 

Assessing the Impact 
of Autonomous and 
Intelligent Systems 
on Human 
Well-Being 

Transparency 

Ethical values during 
concept exploration 
and development 
through stakeholder 
engagement 

Support ethical AI 
development to 
beneft the greater 
society, including 
governance and 
explainability 

• Identify potential threats to the system 
• Develop an approach to combat threats 
• Keep learning to stay ahead of the curve 

• Product development guidance 
• Identifcation of areas for improvement 
• Risk management 
• Performance assessments 
• Support for identifcation of intended and unintended users 
• Impacts on human well-being 

• How to approach transparency 
• Requirements by stakeholder and level 

• Identifes key roles, supports ConOps development, feedback 
elicitation and prioritization, ethical requirements defnition, and 
describes ethical risk-based design processes, and transparency 
management processes 

Leveraging the principles of the Belmont report (respect for persons, 
benefcence, and justice) to guide AI development, describes 
contemporary concerns regarding AI, and describes how to establish 
ethical guidelines; provides a structure for establishing AI ethics that 
includes governance and explainability 

(Continued) 
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TABLE 5.1 (Continued) 
Guides for Ethical AI 

Concern(s) 
Guideline Source Purpose(s) Addressed 
United Nations UNESCO, Focused on human rights; Supports policy 
Educational, 2021 highlights the importance development 
Scientifc and of human oversight of AI 
Cultural Organization through the advancement of 
(UNESCO) Ethics principles such as fairness 
of AI and transparency 

United States U.S. concise set of ethical principles Supports innovation 
Department of Department for the use of AI in accordance and advance 
Defense (US DoD) of Defense, with America’s commitment trustworthy AI 
Ethical Principles 2021 to responsibility and lawful while upholding 
for AI behavior DoD ethical 

standards 

Requirements, Recommendations, or Provisions 
Four core values supporting AI dev for the good of humanity: 

1. Human rights and human dignity: Respect, protection and 
promotion of human rights and fundamental freedoms and human 
dignity 

2. Living in peaceful just, and interconnected societies 
3. Ensuring diversity and inclusiveness 
4. Environment and ecosystem fourishing 

Principles: 

• Proportionality and Do No Harm 
• Safety and security 
• Fairness and non-discrimination 
• Sustainability 
• Right to Privacy, and Data Protection 
• Human oversight and determination 
• Transparency and explainability 
• Responsibility and accountability 
• Awareness and literacy 
• Multi-stakeholder and adaptive governance and collaboration 

Dictate AI should be: 

• Responsible 
• Traceable 
• Reliable 
• Governable 
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United States Offce of the Governs design, development Framework for what 
Intelligence 
Community (USIC) 

Director of 
National 

and use of AI in the USIC 
through ethical principles 

AI should do that 
governs design, 

Principles of AI Ethics Intelligence, development and use 
and Framework for 2021a,b of AI in the USIC 
the Intelligence through ethical 
Community principles 

United States 
Intelligence 

Offce of the 
Director of 

Governs design, development 
and use of AI in the USIC 

Guidance for 
individuals who 

Community (USIC) National through ethical principles design, develop, 
Principles of AI Ethics 
and Framework for 

Intelligence, 
2021a,b 

review, deploy, 
and use AI are 

the Intelligence suffciently trained 
Community to address the 

following issues 
regarding how AI 
should be used 

• Respect the Law and Act with Integrity 
• Transparent and Accountable 
• Objective and Equitable 
• Human-Centered Development and Use 
• Secure and Resilient 
• Informed by Science and Technology 

• Be used when it is an appropriate means to achieve a defned 
purpose after evaluating the potential risks; 

• Be used in a manner consistent with respect for individual rights 
and liberties of affected individuals, and use data obtained lawfully 
and consistent with legal obligations and policy requirements; 

• Incorporate human judgment and accountability at appropriate 
stages to address risks across the lifecycle of the AI and inform 
decisions appropriately; 

• Identify, account for, and mitigate potential undesired bias, to the 
greatest extent practicable without undermining its effcacy and utility; 

• Be tested at a level commensurate with foreseeable risks associated 
with the use of the AI; 

• Maintain accountability for iterations, versions, and changes made 
to the model; 

• Document and communicate the purpose, limitation(s), and design 
outcomes; 

• Use explainable and understandable methods, to the extent 
practicable, so that users, overseers, and the public, as appropriate, 
understand how and why the AI generated its outputs; 

• Be periodically reviewed to ensure the AI continues to further its 
purpose and identify issues for resolution; and, 

• Identify who will be accountable for the AI and its effects at each 
stage and across its lifecycle, including responsibility for 
maintaining records created. 
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TABLE 5.1 (Continued) 
Guides for Ethical AI 

Concern(s) 
Guideline Source Purpose(s) Addressed 
United States Offce of the Governs design, development Issues individuals 
Intelligence Director of and use of AI in the USIC should be able to 
Community (USIC) National through ethical principles address 
Principles of AI Ethics Intelligence, 
and Framework for the 2021a,b 
Intelligence 
Community 

Requirements, Recommendations, or Provisions 
• Understanding Goals and Risks 
• Legal Obligations and Policy Considerations Governing the AI and 

the Data. 
• Human Judgment and Accountability 
• Mitigating Undesired Bias and Ensuring Objectivity. 
• Testing Your AI 
• Accounting for Builds, Versions, and Evolutions of an AI 
• Documentation of Purpose, Parameters, Limitations, and Design 

Outcomes 
• Transparency: Explainability and Interpretability 
• Periodic Review 
• Stewardship and Accountability: Training Data, Algorithms, 

Models, Outputs of the Models, Documentation 
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on user-centered and human-centered AI (HCAI). We defne user-centered AI as 
those considerations focused on the consumer or user of the AI technology, whereas 
HCAI can be thought of as more holistic to consider the full partnership of humans 
and AI to foster human agency (Ozmen-Garibay et al., 2023). 

Ozmen-Garibay et al. (2023) completed an extensive literature review to highlight 
and categorize several of the major issues associated with HCAI. They emphasize 
challenges in the six areas of human well-being, responsible design practices, pri-
vacy considerations, human-centered design principles, oversight, and respect for 
human cognition as the largest hurdles to human-centered AI development. Though 
all of these HCAI challenges apply to the use of AI in the assessment of human 
training, performance, and selection in some way, we will focus on how they apply 
to our topic of user-centric issues. We take this approach from two perspectives – the 
assessment of others and the assessment of the self. Further, we argue that from an 
ethical and moral standpoint, human well-being should serve as the ultimate goal of 
deploying AI in performance assessment, thus we describe how fve of the categories 
identifed by Ozmen-Garibay et al. can serve to enhance or undermine well-being. 

Human well-being, or psychological well-being (PWB), is described as personal 
perceptions of one’s own levels of environmental mastery, autonomy, self-acceptance, 
personal-growth, life-purpose, and positive relationships with others (Ryff & Keyes, 
1995). Closely related to PWB is a theory of motivation, Self-Determination Theory 
(SDT). Self-Determination Theory posits that human motivation is determined by 
the fulfllment of three basic psychological needs, including competence, auton-
omy, and relatedness (Ryan, 2009; Ryan & Deci, 2000). Each of the facets of PWB 
and SDT can be benefcially or detrimentally impacted by interactions with one’s 
environment. Let us now explore these theories in conjunction with using AI in the 
assessment of human performance, training and selection from the perspective of 
the user assessing the self and others. To illustrate the potential challenges, we com-
plete this exploration through the use of two examples. In assessing one’s self, we 
use the example of an AI tool to evaluate physical training results as impacting one’s 
own health. In assessing others, we examine the use of an AI tool to assess physical 
training results of others for the selection of spots on a sports team. 

We can glean insight into how PWB and SDT can be negatively impacted by the 
use of these technologies by refecting on a few of the major challenges mentioned 
by Ozmen-Garibay et al. (2023). Responsible design practices should involve efforts 
to reduce bias in the training data that contribute to the development of any health 
technology (Challen et al., 2019), including that of the AI ftness tracking technology. 
If in development, bias was not accounted for, or could not be predicted, the technol-
ogy itself may act on an assumption that does not hold true. For example, most ft-
ness tracking devices request a person to input whether they are female, male, other, 
or prefer not to say. These feature selections have a direct effect on the algorithm 
used to calculate a person’s caloric needs and calories burned based on the activity 
the tracker and its accompanying application leveraged. However, the trackers are 
subject to the bias of the data that went into building them, such as the numbers of 
females, males, others, and those that preferred not to say, in addition to the indi-
vidual differences each of these persons brought to the data. The resulting AI may 
not adapt to the nuances of the active user well enough to provide them with accurate 
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caloric advice, thus leading the user to over-eat, under-eat, and gain or lose weight 
unintentionally resulting in poor PWB (possible distress from unintentional weight 
changes) and SDT (loss of motivation to try to change one’s weight to a healthier 
level) outcomes. This case study is only one small example of how lack of respon-
sible design, despite good intention, can cause bias and have a negative impact on 
PWB and SDT. 

As stated above, ftness trackers and their applications require personal data 
(Yang, 2021), there are consequently privacy considerations that come into play that 
can impact PWB and SDT. Above and beyond the individual feature data these tech-
nologies request, many also require permissions and/or access to other data on the 
device the application runs on. For example, the device or application may access 
phone calls, messaging, location, and/or a host of other information. Of course, 
many of these serve to help the tracker and application to run properly – it would 
be diffcult to tell you how far you ran outdoors during a workout without accessing 
your GPS location – however, the tracker may also be logging information such as 
which stores you visit and where you spend your free time. Though these data col-
lection points are circumstantial, user environmental mastery and self-acceptance 
can be negatively impacted if the user does not realize that these data may be used to 
target advertisements to them, especially if those ads are of a sensitive nature. This 
hypothetical example represents just a small way we believe that lack of privacy con-
siderations during AI development can impact PWB and SDT for users leveraging 
the technology to assess themselves. 

Our next hypothetical scenario is in the use of an AI technology assessing the 
performance of others for selection of a position on a sports team. It makes sense 
that it can be appealing to leverage such technology in this type of selection as 
one could argue that it might reduce human bias or favoritism in the process. 
However, we know that trust in the technology can affect someone’s acceptance 
of the information it provides (Lee & See, 2004). Specifcally, if user trust is not 
properly calibrated to or matching the abilities of a technology, misuse, disuse, 
and/or abuse of the technology can result. In our example, if the technology is not 
designed in a human-centered way, and the user has too much trust in the technolo-
gy’s ability, that person may accept what the technology says without question. This 
outcome could result in the wrong players being selected for the team, negatively 
impacting the PWB and SDT through unsupported knocks on the competence and 
self-acceptance of those who were actually the better choices. Furthermore, the 
person leveraging the technology might become complacent with the technology 
choices, thus lessening their autonomy and environmental mastery, impacting their 
PWB and SDT. 

Continuing with this example set, designers of such an AI technology need to 
maintain a respect for the user’s cognition in the task of selecting members of their 
team. Many current developers have been given a goal of creating explainable AI to 
support user cognition. However, explainable does not always translate to under-
standable (Herm et al., 2023). When reviewing data from each of the people trying 
out for the sports team, the AI needs to produce information that is digestible to the 
person that will be ingesting it. More specifcally, if the technology discusses the 
type of algorithm it used to achieve its decision or recommendation, it is likely not 
supporting the average user; it is undermining competence, and negatively impacting 
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PWB and SDT. It should rather point to clear, easy to understand metrics that distin-
guish its decisions and recommendations. This example set certainly does not cover 
the wide range of ways that leveraging AI for performance, training, and selection 
activities can cause negative impacts as a full example set would be a book in and of 
itself. However, we invite and challenge our readers to consider these cases as inspi-
ration to further examine how AI can and does impact their daily lives. 

THE CURRENT LARGEST SUCCESSES/BENEFITS 

We have pointed out just a few of the many ways this type of technology can harm 
those involved; however, there are strong benefts that in leveraging AI for assessment 
and selection. AI has the ability to accept a very large number of inputs from a series 
of complex data points simultaneously and can provide a real-time or near-real-time 
assessment of these inputs that would otherwise take humans a signifcant amount of 
time to process. Specifcally, Alowais et al. (2023) believe that AI has the ability to 
revolutionize healthcare diagnostics and treatment plans. These researchers argue that 
as long as there is a proper consideration for the potential bias and data privacy issues 
that will arise, the ability of AI to sift through data to assess health conditions and 
provide a series of potential diagnoses, as well as select an optimal series of treatment 
plans for these diagnoses can and will speed along medical intervention. However, 
we again caution those wishing to use these types of technologies – these are not and 
should not be relied upon as a replacement or a crutch for proper medical education 
and practice – rather, they must be used a series of tools to augment the knowledge and 
creativity of excellent practitioners. We advise that this caution extend to all instances 
of AI leveraged in the training, selection, and/or assessment of humans. 

MITRE disclaimer: Approved for public release. Distribution unlimited PR_24-02288-1 
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WHAT IS ADAPTIVE TRAINING? 

Adaptive training (AT) allows for the emulation of a one-on-one human tutoring 
experience for a learner (Bloom, 1984; VanLehn, 2011). AT systems are computer 
systems that allow for the adaptation of a large host of variables that have been 
deemed relevant for the individual learner’s mastery of a topic. These variables 
include but are not limited to aptitudes (Cronbach, 1957; Park & Lee, 2004), learn-
ing preferences or styles (though this has largely been debunked; see Pashler et al., 
2009; Nancekivell et al., 2021), instructional interventions such as scaffolding and 
feedback (Fraulini et al., 2024; Landsberg et al., 2016; Schroeder et al., 2023), and 
performance (Kelley, 1969; Marraffno et al., 2021). Further, these variables can be 
used prior to training, to adapt the learning experience during training, or at the end 
of a training session (Landsberg et al., 2012a). 

Before going further to discuss AT systems in detail, we want to clarify terms that 
are oft confused with AT. These terms include constructs such as adaptive aiding, 
adaptability, adaptive performance, and adaptive learning. First, adaptive automa-
tion involves some form of automation to assist a human on an operational task when 
they lose processing capacity from increases in workload, fatigue, etc. (Wickens 
& Hollands, 2000). Specifcally, adaptive aiding is a type of adaptive automation 
that aids the user with a task instead of fully taking over the task. Widely known 
examples of adaptive aiding in driving are adaptive cruise control and blind spot 
monitoring. These capabilities do not take over the task of driving but aid the human 
in driving more safely. 

Next, adaptability and adaptive performance are related terms, which focus on 
how humans can adapt their behavior on the job (Huang et al., 2014). For instance, 
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Pulakos et al. (2000) defne adaptive performance as the profciency with which an 
individual alters his or her behavior in response to the demands of a new task, event, 
unpredictable situation, learning new technology, or environmental constraints (e.g., 
noise and climates). Adaptability (also sometimes referred to as adaptivity or adap-
tive learning) is defned as “cognitive, behavioral, and emotional regulation that 
assists individuals in effectively responding to change, variability, novelty, uncer-
tainty, and transition” (Martin, 2017; p. 696). Therefore, researchers in the domain 
of adaptability and adaptive performance are investigating the individual difference 
variable. For instance, researchers are concerned with measurement of the construct 
(van Dam & Meulders, 2021), understanding the antecedents and consequences in 
order to predict or improve job performance (Martin, 2017), and/or teaching learners 
how to be adaptive on the job (Allworth & Hesketh, 1999). This is an entirely differ-
ent perspective than AT. With adaptivity/adaptive performance, the focus is on how 
the human changes their behavior based on the task environment. In AT, the system 
is changing to meet the needs of the human. 

Subsequently, AT is also confused with adaptive learning systems. However, the 
confusion here is not as problematic as the terms are at least somewhat related. The 
term adaptive learning systems stems from the artifcial intelligence (AI) domain. In 
this feld, adaptive learning systems focus on algorithms or models that learn from 
a continual infux of data (Zliobaite et al., 2012). Therefore, it is possible that an AT 
system is also an adaptive learning system by incorporating adaptive learning algo-
rithms or models. However, it is not a requirement for an AT system to be an adap-
tive learning system. Indeed, most felded AT systems have rule-based instructional 
algorithms yet are still quite successful at improving learning gains (Billings, 2012; 
Johnson et al., 2019; Landsberg et al., 2012b; Van Buskirk et al., 2019). 

Finally, the term that is most wrought with confusion is adaptive learning. The 
term adaptive learning is frequently used synonymously with adaptability/adaptive 
performance, AT, and adaptive learning systems. For this reason, we will refer to 
instructional systems that adapt to the needs of the learner as AT systems to, hope-
fully, eliminate the confusion surrounding this construct. Table 6.1 presents a sum-
mary of these commonly confused terms. 

HOW TO ADAPT TRAINING 

At their core, all AT systems must be able to observe the learner’s behavior, assess 
that behavior (i.e., give meaning to that behavior), and provide an instructional 
response in a way that changes the training for the learner. This is known as the 
“Observe, Assess, Respond” (OAR) model (Campbell, 2014). In simple terms, fol-
lowing this process generates the algorithms that underpin an AT system. 

The complexity of each of these components (i.e., observation, assessment, and 
response) and their associated algorithms can vary greatly (Campbell, 2014). For 
example, on the simplistic side, if an elementary school student achieves a 40% 
score on a math quiz covering fractions (observation), then the system could deter-
mine that threshold for passing was not achieved (assessment) and then provide the 
student with remedial information on what questions they missed (instructional 
response) before moving them onto the next lesson. On the higher complexity side, 
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TABLE 6.1 
Summary of Terms Commonly Confused with Adaptive Training 

Term Defnition What Adapts? 
Adaptability/adaptivity Changes in thoughts, behaviors, and emotions Human adapts to task 

that help humans respond to new challenges 

Adaptive aiding A type of adaptive automation which aids a System adapts to human 
human with a task instead of fully taking over 

Adaptive automation Some form of automation that assists a human System adapts to human 
in completing a task when processing capacity 
diminishes 

Adaptive learning Sometimes used to mean adaptability, adaptive Depends on intended 
performance, adaptive training, and adaptive meaning 
learning systems 

Adaptive learning system Algorithms or models that learn from a continual System adapts to data 
infux of data 

Adaptive performance How well a human changes their behavior in Human adapts to task 
response to new challenges 

Adaptive training Computer systems that can adapt training System adapts to human 
content and other variables to assist a human 
with learning a topic 

in addition to which quiz answers were correct and incorrect, an AT system could 
use eye tracking to determine that the student was not attending to certain portions 
of the instructional material describing the difference between natural and rational 
numbers. Then, combining the eye tracking data with the quiz data (observation), the 
assessment algorithm determines that the student had a misconception with number 
order of fractions such that they believed a higher denominator meant a bigger num-
ber (e.g., 1/10 is bigger than 1/2 because the natural number of 10 is higher on the 
number line than 2). Finally, the instructional response algorithm determines that the 
student should review content they skipped over during the lesson but also generates 
new problems for the student to solve, increasing their complexity as the student 
moves toward mastery of the topic. 

As these examples highlight, both systems are adaptive, but the “intelligence” 
within the systems are vastly different. When designing AT systems and making 
decisions for the level of intelligence needed for each AT component, practitioners 
must consider the nature of the task to be trained and the nature of the data that the 
system can collect. Knowing these variables provides designers and researchers the 
resources they need to generate effective adaptive assessment algorithms and con-
sequently how sophisticated those algorithms will need to be to affect the learning 
experience. Campbell (2014) argued that the level of complexity could vary along 
all dimensions of the OAR model (see Figures 6.1 and 6.2 for a conceptualization 
of this idea). All AT systems will most likely have a variety of simple and complex 
elements, but a system does not need to be complex along every OAR dimension to 
be effective. Ultimately, AT system designers must use their own judgment along 
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FIGURE 6.1 Elements of the Observe, Assess, Respond (OAR) model. Notional examples 
are provided along the continuum of simple to complex for each element (adapted from 
Campbell, 2014). 

with evidence from the research literature to implement this model in a valid way. 
For example, keystrokes may be suffcient for assessing mastery of spelling lessons 
to provide remedial content, such as phonics lessons. However, in a more complex 
domain like writing, keystrokes may be too simple to make complex assessments 
and respond appropriately. An effective training system for writing would need to 
observe more behavior from the learner, such as elements of language like grammar 
or semantics. 

To be effective, training systems designed under the OAR model should be capa-
ble of properly diagnosing the learner’s capabilities. This will depend on what data 
are collected under the “observe” process, which informs how well those data can 
be assessed to respond in a way that is conducive to learning. Since we are describ-
ing adaptive systems, it is understood that learners’ capabilities will change over 
time, and the adaptive system must adjust while the learner continues to gain more 
knowledge. In the following sections, we offer the concept of mental models as a 
way of conceptualizing the learning process and continue with theoretical perspec-
tives for assessing the “sweet spot” for learning. 

MENTAL MODEL FORMATION DURING THE LEARNING PROCESS 

The ultimate goal of training is proper mental model formation. As a concept, men-
tal models emerged out of Craik’s (1943) seminal explanation of the human mind and 
nervous system. He argued that humans were capable of modeling cause-and-effect 
and broadly that humans could mentally simulate events of the real world. These 
ideas have been expanded to suggest that mental model construction is an automatic 
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FIGURE 6.2 Three dimensions of OAR. Adaptive training systems can exist anywhere in 
this three-dimensional space depending on the simplicity or complexity of the observations, 
assessments, and responses that they can make (adapted from Campbell, 2014). 

process that humans engage in to understand the way things work. Johnson-Laird 
and Byrne (1991) theorized that the construction of mental models was an itera-
tive process. Individuals construct mental models based on their own understanding 
of how something works, but that model may be revised if alternative information 
challenges the existing mental model. Importantly, Johnson-Laird and Byrne (1991) 
contended that humans form mental models semantically – that is, by reasoning with 
language. 

As an example of mental model construction and this iterative process, consider 
that many people learn about mixing paint colors at a young age. Upon learning this, 
they will naturally construct a general mental model for mixing colors. Having wit-
nessed that mixing blue paint and yellow paint yields green paint, one could surmise 
that mixing paint colors together will typically yield a darker color. Continued paint 
mixing would yield continuously darker colors, until one is left with dark brown or 
black paint. While observing the causes and effects of mixing colors, the individual 
forms a mental model to comprehend their observations. This mental model could be 
described in terms of cause-and-effect: “the more paint colors that I mix, the darker 
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my resulting paint color will be.” Thus, the learner has constructed a mental model 
for mixing colors. 

However, when mixing colors of light, this previously constructed mental model 
is incompatible. Combining red light and green light yields yellow light, and contin-
ued light mixing would yield continuously lighter colors, until one is left with white 
light. This may come as a surprise to a young learner who has relied on a mental 
model for mixing colors when learning with paint. The learner then needs to revise 
their over-generalized mental model for color mixing to include conditions for what 
medium is being mixed. 

Mental models are not limited to understanding the world through observation, 
as described above. Mental models can be more sophisticated, allowing the mental 
simulation of events, motion, and changes over time (Collins & Gentner, 1987). As 
learners try to understand something new, their mental models undergo initial con-
struction and iterative modifcation, which can include any of these features (Glaser 
& Bassok, 1989). Learners begin with loosely structured mental models that must be 
shaped by undergoing the learning process. 

FACILITATING MENTAL MODEL CONSTRUCTION 
IN ADAPTIVE TRAINING SYSTEMS 

In a well-designed AT system, underlying instructional algorithms will change ele-
ments of the training to support mental model development based on what the system 
can observe in the learner’s behavior. For example, if an AT system assesses that a 
learner is struggling with a particular conceptual element of a task, it can respond 
with tailored feedback to reinforce that under-developed concept. 

To illustrate this point, consider a mechanic learning how to replace an engine 
part. An important concept in engine part replacement is torque. Nuts, bolts, and 
other fasteners must be torqued with precisely specifed amounts of force to ensure 
engine parts stay attached. If fasteners are under-tightened, a part may eventually 
become detached due to normal operating vibrations on the engine. If fasteners are 
over-tightened, they may become damaged such that they no longer fasten the part 
to the engine effectively. Therefore, meeting proper torque specifcations is integral 
for engine operation. Whether this mechanic is learning from a human instructor 
or a mixed reality training system, they need a learning intervention on the con-
cept of torque specifcations. Where a human instructor might observe the mechanic 
improperly torquing, an AT system could objectively observe the mechanic’s wrench 
rotations to assess whether they under- or over-torqued. With this objective assess-
ment, the AT system could deliver a remedial lesson, feedback, or other instructional 
content to ensure the learner understands this concept. 

In the example above, the learner may have constructed a mental model that could 
be described as “to replace an engine part, I need to attach it to the engine and tighten 
the bolts that connect it to the engine.” However, without a proper understanding of 
torque, this mental model is incomplete. After receiving remedial instruction on the 
concept of torque specifcations, this mental model may be reshaped to incorporate 
mental simulations of the consequences when torque specifcations are disregarded. 
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The AT system detected a defciency in the mechanic’s mental model and changed 
the training to meet their need to refne that mental model. As mentioned, the con-
struction of mental models is an iterative process, but these iterations are well-suited 
to the iterative learning interventions that are possible with AT. 

HOW TO DESIGN ADAPTIVE TRAINING 
ALGORITHMS TO FIT THE LEARNER’S NEEDS 

The goal of an AT system is to adjust any element of the training environment to put 
the trainee in the “sweet spot” for learning. In essence, the “sweet spot” is a fgurative 
place where a learner faces some challenge but will still have a good likelihood of 
succeeding. Finding the “sweet spot” ensures learners are not bored with lessons that 
are too simple and unengaging, but they still must expend effort to proceed through 
the training. Importantly, the lessons must not be so challenging that they cause the 
learner to disengage from feeling overwhelmed. This idea may seem simple enough, 
but complexity grows when considering that the “sweet spot” is going to be different 
for every learner, and it will change throughout the learning process. A variety of 
theoretical perspectives suggests the “sweet spot” creates the best opportunity for 
learners to get the most out of their training. In the following sections, we describe a 
few perspectives worth considering from the psychological literature, as well as per-
spectives that have been applied in practical AT research using the OAR paradigm. 

ZONE OF PROXIMAL DEVELOPMENT AND 
THE “SWEET SPOT” PHILOSOPHY 

Education-based researchers will be familiar with Vygotsky’s concept of the Zone 
of Proximal Development (ZPD; Vygotsky, 1978). This concept is based on theories 
of children’s learning but posits that the key to learning is understanding what stu-
dents can accomplish on their own and what students can accomplish with help from 
another (e.g., skilled peer or teacher). This “zone” between these is considered the 
ZPD. Vygotsky argued that a learner receiving assistance while in their ZPD would 
help them consolidate their learning. Essentially, as students accomplish their learn-
ing tasks while receiving help, they begin to acquire the skills that enable them to 
accomplish those same tasks on their own. 

Over time, this process “shifts” the ZPD toward more complex learning tasks as 
the student continues to learn. In AT contexts, this is commonly applied to diffculty 
adaptation or scaffolding (Goldberg et al., 2015; Sottilare & Brawner, 2021; Van 
Buskirk et al., 2019), where the diffculty of the training is matched to the learner’s 
capability, or scaffolding is provided when the lesson content changes or adds com-
plexity. With diffculty adaptation as an example (illustration provided in Figure 6.3), 
training that is too easily passed (determined through observation of performance 
variables) runs the risk of being too boring for the learner, causing them to disengage 
with the learning material. This is contrary to training that is too diffcult and over-
whelms the learner who then gives up. When providing an instructional response 
such as scaffolding, an AT system could offer support if it assesses that a learner is 
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FIGURE 6.3 An illustration of the concept of Zone of Proximal Development (ZPD) as 
imagined for learning a skill with an adaptive training system, where diffculty adapts over 
time as the learner’s capability increases over time. Providing training to a learner within 
their ZPD is argued to facilitate more effcient learning than providing training below or 
above their ZPD. 

starting to falter or when the learner proceeds to a more complex lesson. The chal-
lenge facing AT systems is to detect when learners have entered these states (observe 
and assess) and alter the diffculty or the assistance of the training to return to the 
learner’s ZPD (instructional response). 

Some researchers view Vygotsky’s ZPD as controversial for learning applications 
(Chaiklin, 2003; Dunn & Lantolf, 1998), since its original focus was on understand-
ing how children develop mentally through different phases of childhood, and they 
contend that it should not be extended to adult learning. Despite this, the concept 
of ZPD has played an infuential role in science of learning research for decades 
(Gredler, 2012; Nyikos & Hashimoto, 1997; Puntambekar, 2022; Salomon et al., 
1989; Verenikina, 2003). Ultimately, the concept of ZPD as it is used in contempo-
rary research may be too vague to be of use to AT system designers and researchers. 
For example, an AT system designer can target the learner’s ZPD by changing diff-
culty or modifying the level of scaffolding present in the learning scenario. However, 
the ZPD perspective does not offer specifc guidance where a researcher or designer 
could predict when a learner is in their ZPD and when they should be pushed 
for a higher challenge. This is left to the AT system designer to determine with their 
best judgment, perhaps with the support of prior performance data or subject-matter 
expertise. Shortcomings aside, ZPD is an easily understood philosophy for many 
different audiences. However, there are alternative theoretical perspectives that can 
apply to AT designs that maintain the philosophy of targeting the “sweet spot” for 
learning. 

COGNITIVE LOAD THEORY 

Cognitive Load Theory (CLT; Sweller et al., 2011) is another theoretical perspective 
that has been used in the design and evaluation of AT systems (Marraffno et al., 
2021). CLT establishes that learners experience three different types of cognitive 
load: germane, intrinsic, and extraneous. Germane cognitive load is effortful pro-
cessing that learners engage in as they are constructing mental models of the learn-
ing task. Essentially, learners use their working memory to process the task and 
commit the information to long-term memory. Intrinsic cognitive load is the inherent 
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tendency of the subject matter to induce load in the learner. This is either a property 
of the task itself or a function of the learner’s knowledge. For example, learning 
subtraction has a lower intrinsic load than learning division, but the level of intrinsic 
load induced by division would be greater for an elementary school student than a 
college mathematics professor. Extraneous cognitive load is any variable not directly 
relevant to the learning experience that might interfere with cognitive processing 
(e.g., noise or distractions in the learning environment, poor system usability, and 
poorly designed learning material). CLT also posits that these different types of load 
are additive, and each human has a limited capacity for overall cognitive load. If 
these types of load become too excessive, it can result in cognitive overload, which 
is undesirable for the learner and learning outcomes (see Figure 6.4 for examples of 

FIGURE 6.4 An example of different learning circumstances as understood through 
Cognitive Load Theory (CLT). (a) CLT assumes that human working memory capacity is 
limited. (b) An example of an ideal learning circumstance, where intrinsic load is manage-
able and extraneous load is minimal, so the learner can dedicate the rest of their attentional 
capacity to germane load. (c) An example of a poorly designed learning circumstance, where 
intrinsic load is manageable, but extraneous load is excessive and limits the learner’s capacity 
for germane load. This scenario would likely lead to overload for the learner. (d) An example 
of a learning circumstance that is beyond the learner’s current capability. The intrinsic load 
is too great for the learner, where even minimal levels of extraneous load will leave the 
learner with little capacity for germane load. An adaptive intervention would be necessary 
to reduce the intrinsic load on the learner to avoid overload. (e) An example of a learning 
circumstance that is beneath the learner’s current capability. The intrinsic load is too low 
for the learner and therefore does not require a substantial capacity for germane load. This 
task is likely too easy for the learner and may represent a learning ineffciency. An adaptive 
intervention would be necessary to increase intrinsic load on the learner so that they undergo 
more germane load to process the learning material. 
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how to understand different learning circumstances with the assumptions of CLT). 
However, as learners construct and revise their mental models through germane 
processing, the intrinsic load they experience will decrease. This facilitates more 
effcient use of their limited working memory capacity. Ideal learning environments 
will foster germane load, minimize extraneous load, and manage intrinsic load. 

Different types of cognitive load will be highly variable based on the individual. 
Intrinsic load will impose different demands on individuals based on their own cog-
nitive ability or prior knowledge of the learning content. Extraneous load can vary 
based on an individual’s ability to acclimate to things such as noisy environments 
or their patience with poor user interface design. These individual differences will 
mediate the learner’s ability to execute germane cognitive processing while learn-
ing. Careful identifcation of the appropriate individual differences (such as prior 
knowledge or relevant cognitive abilities) for the task would be necessary to support 
the learner (e.g., the individual differences principle; Mayer, 2009). 

When designing an AT system, extraneous load should be reduced to the maxi-
mum extent possible to minimize the possibility of overload. Designers are empow-
ered to “design out” extraneous load wherever possible and can manage the level of 
intrinsic load the learner experiences through performance assessment and training 
content adaptation. In essence, managing intrinsic load is how an AT system would 
locate the “sweet spot” for the learner, where germane load can be prioritized. This 
could be accomplished with something like diffculty adaptation, as more diffcult 
training scenarios will have a higher intrinsic load than less diffcult training sce-
narios. Alternatively, it could be accomplished by lesson selection, where an AT 
system diagnoses fundamental errors (through observation and assessment) and pro-
vides remedial learning interventions (the instructional response). Just as with ZPD, 
this could also manifest as adaptively supplying scaffolding to the learner to reduce 
intrinsic load of the subject matter. 

Like ZPD, CLT is not without its critics. One of the greatest challenges of CLT 
is determining and validating how to observe or measure cognitive load. Subjective 
measures exist but have limitations (Ayres, 2017). Physiological indices of cog-
nitive load have also been tested (Coyne et al., 2009; Haapalainen et al., 2010; 
Hughes et al., 2019), but these generally assess “cognitive workload” in sum, not 
the different types of cognitive load described above. Despite CLT’s theoretical 
limitations, efforts continue to identify appropriate physiological markers (Ayres 
et al., 2021) and develop questionnaires (Krieglstein et al., 2023) to measure the 
different types of cognitive load. 

For research applications, CLT offers a meaningful theoretical framework to 
make predictions and observations in AT experiments, but the specifcity issues 
with the load types in CLT precludes rigorous experimentation. This should change 
as physiological and subjective measurement methodology research continues to 
evolve. For now, researchers can easily manipulate intrinsic and extraneous load 
but must assume germane load has occurred with indirect post-task measures of 
learning or performance. However, the design implications and accessibility of CLT 
are still useful for practitioners: reduce or eliminate extraneous load and adapt the 
intrinsic load to maximize the potential for germane cognitive processing during 
learning. 
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HUMAN PERFORMANCE UNDER STRESS 

Yet another perspective for locating the “sweet spot” can be considered from the 
domain of stress research with human performance (Hancock & Warm, 1989). Their 
“Trinity of Stress” is structured in the fow of inputs, adaptations, and outputs. This 
perspective argues that the task itself is the source of stress on the individual (input), 
the individual must adapt to this stress to continue performing the task (adaptation), 
and their performance can change because of this process (output). It is important to 
note that the individual’s adaptations to the stress source can be psychological, physi-
ological, or both, and may be deliberate or involuntary. 

Considering stress as a continuum from hypostress to hyperstress, Hancock and 
Warm posited several “zones” for human performance (see Figure 6.5). At the cen-
ter of this spectrum is the “normative zone” of the individual, which triggers no 
adaptation on the part of the individual. Hancock and Warm suggested that this 
zone was transitory in cases of changing task demands. Outside this is the “comfort 
zone” of the individual, where the input stressors do cause the individual to adapt 
to the stress of the environment. Surrounding the comfort zone is a zone of psycho-
logical limit, which is further surrounded by a zone of physiological limit. Outside 
of these are zones of dynamic instability where failure is inevitable. Hancock and 
Warm (1989) argued that performance should decrease as individuals break out of 
the comfort zone and into the zones of psychological or physiological limits. 

This theoretical perspective contributes an additional element of nuance worth 
considering for designing AT systems. For the “input” aspect of the model, percep-
tion of the stress of the environment or task can vary by individual (Matthews & 
Campbell, 1998). Following that, the “adaptation” aspect accounts for individual 
differences in how learners cope with the stress of the task. This will vary with 
individuals from trait and state levels (Schroeder et al., 2019). Both perceptions of 
the stress and consequent coping can potentially moderate and mediate the “output” 
(e.g., learning outcomes or performance measures). With this in mind, human per-
formance researchers should account for individual differences in task appraisal and 
adaptive processes (Matthews, 2016). This is different from individual differences 

FIGURE 6.5 A simplifed adaptation of the Hancock and Warm’s (1989) model of perfor-
mance under stress. As input stress (e.g., task demands) changes, performers will adapt to 
these changes and be pushed further along this continuum. Each zone represents a greater 
burden of adaptivity required of the individual, to the point that excessive or insuffcient input 
stress will result in failure (upon reaching the zone of dynamic instability). Performance is 
predicted to falter the further an individual is away from their normative zone; however, the 
normative zone can change over time due to training or increasing familiarity with the task. 

Note: C = Comfort Zone, PS = Psychological Zone of Maximal Adaptability, PH = Physiological Zone 
of Maximal Adaptability, DI = Dynamic Instability. 
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mentioned in previous sections such as prior knowledge and cognitive ability, as the 
relationship between task-related individual difference measures and performance 
tends to change as one learns the task to be performed (Schroeder et al., 2019). 
Hancock and Warm’s (1989) model acknowledges how input stress affects the adapt-
ability of individuals but does not offer predictions regarding these relationships. 
Although this adds complexity to using this model for research purposes, comple-
mentary theories of stress and coping with task stress (Lazarus & Folkman, 1984; 
Matthews & Campbell, 1998) can address this need. 

Consistent with the theme of fnding the “sweet spot” for learning, AT systems 
should avoid over-stressing learners such that their level of overwhelm leads to fail-
ure (like subjecting a novice to a realistic air traffc control simulation) or under-
stressing learners such that their level of boredom leads to failure (such as a slow, 
boring, extremely low event-rate signal detection task). However, this model expands 
further to delineate the zones of psychological processing and physiological capa-
bility, acknowledging that stressors can come in the form of physical activity in 
addition to cognitive processing. For complex tasks with physical and mental com-
ponents, it is important to consider how both independently contribute to the experi-
ence of stress in the learner and therefore to their performance (such as the physical 
demands of learning with gestures in virtual reality, Johnson et al., 2023). 

For AT purposes, such a perspective may be particularly useful for dynamic 
tasks where high performance is required under pressure, such as many military 
tasks or real-world job tasks. Specifcally, Hancock and Warm (1989) argued their 
model applies to attention-demanding human performance tasks. For the AT feld, 
observation and assessment algorithms may determine a learner’s performance is 
high, which might trigger the instructional response algorithms to increase the dif-
fculty of the next lesson or scenario. However, if the learner is achieving this level 
of performance under high levels of stress, increasing their diffculty may push them 
toward a zone of dynamic instability through burnout. A more appropriate adapta-
tion algorithm could be to account for both performance and stress and to hold off on 
an instructional response and wait until a learner’s stress level decreases while per-
formance is maintained. Previous research suggests that decreases in stress naturally 
occur with additional training or practice (Driskell et al., 2008; Mackworth, 1946). 
However, this example only accounts for the “input” element of the trinity of stress. 

Accounting for the “adaptation” aspect of the trinity of stress can explain addi-
tional variance in performance. Variables such as how the learner is coping with the 
stressful demands of the task can mediate performance outcomes if the learner is 
coping maladaptively (Matthews, 2002; Matthews & Campbell, 1998; Van Buskirk 
et al., 2023). Such a variable can be particularly informative for adaptive instruc-
tional response algorithms, as previous research suggests that changes in diffculty 
can induce stress in learners (Cox-Fuenzalida, 2007). Therefore, perhaps another 
instructional strategy or response should be delivered. Research using this perspec-
tive with AT is relatively new compared to ZPD and CLT (Hancock et al., 2024; 
Schroeder et al., 2019, 2024), but further research is needed to understand how 
training adaptations (such as dynamic changes in diffculty or adaptive scaffolding) 
infuence the compensatory processes of the learner (such as coping), which further 
impact performance outcomes. 
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Unlike the other theoretical models, baseline and post-task measures of stress 
(either physiological or psychometric) can help determine to what extent a task 
increases or decreases a learner’s perceived stress. However, researchers and practi-
tioners should know that the bounds between the normative zone and the psychologi-
cal zone of maximal adaptability will vary with different tasks and with individual 
differences. Hancock and Warm (1989) also suggested that these zones may not nec-
essarily follow a linear continuum but may have discrete thresholds where perfor-
mance or the learner’s adaptability drastically changes. 

SUMMARY OF THEORETICAL PERSPECTIVES AND THE 
IMPORTANCE OF INDIVIDUAL DIFFERENCES 

We have presented three different theoretical perspectives for fnding the “sweet 
spot” in AT and provided brief examples of when algorithms can act in accordance 
with those perspectives. ZPD, CLT, and the stress perspectives offer increasing lev-
els of complexity. Researchers may prefer one model over the other depending on the 
level of complexity of their hypotheses, the type of task to be trained, or the nature of 
predictions to be made (i.e., relating to the individual, the task, or both). Researchers 
should also consider which relevant variables they need to collect prior to selection 
of a theoretical perspective. This will determine how an AT system can observe 
learners’ behavior, assess that behavior, and respond with an adaptive intervention. 

Similarly, designers may fnd one perspective to be more appropriate than another 
for creating adaptive instructional content. ZPD and CLT may be more relevant for 
tasks such as learning mathematical operations, where mastery of concepts or intrin-
sic load can be operationally well defned. The stress perspective may be more ben-
efcial for training air traffc control tasks that are more complicated and dynamic. 
There are also other use cases of AT where learning is not the main goal, such as 
ftness training, where the stress perspective is more appropriate. Ultimately, there 
is no one-size-fts-all approach to fnding a learner’s “sweet spot” – this will vary 
depending on their perceptions of the task and task-relevant individual difference 
attributes. Selecting a theoretical perspective may also infuence which types of 
responses an adaptive system will execute. ZPD is well-suited to responses such as 
changes in diffculty, CLT may be better suited to dynamic feedback, and the stress 
perspective may be better suited to stress regulation interventions. 

In each section, we suggested a variety of individual difference variables and 
how they might infuence performance from the lens of each theoretical perspective. 
Researchers must carefully balance the need for measuring individual differences 
against overloading their participants and inducing measurement fatigue. There is 
practically no end to the number of psychometric variables that could be selected, so 
researchers must carefully identify which ones they expect to be most relevant to the 
task to be learned. For example, previous research indicates that cognitive abilities 
such as spatial ability can moderate the effect of learning a spatial task in virtual 
reality (Johnson et al., 2022). Other research has found that, for learners who tend to 
use maladaptive stress coping, adapting training in real time can exacerbate distress 
and workload, which impairs performance (Schroeder et al., 2019). 
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However, individual differences do not always need to be measured with a ques-
tionnaire. Some individual differences can be inferred with behavioral data that an 
AT system will naturally collect as the learner is using the system. For example, 
cognitive ability, such as processing speed, could be inferred from data such as how 
quickly a learner reads a vignette or responds to stimuli. Other research suggests 
that behavioral data such as redundant actions (Schroeder et al., 2016) and response 
latency (Schroeder et al., 2024) are correlated with individual differences in neuroti-
cism and maladaptive coping, respectively. If a system is suffciently sophisticated, 
AI could be used to identify which of these behavioral variables are relevant for task 
performance. 

However, assessing behavioral data in this way is not without limitation. The effec-
tive use of behavioral data as a proxy for individual difference measures assumes the 
learner is paying attention to the learning content and is not distracted by extraneous 
stimuli or their own thoughts. Behavioral data are also likely to be confounded with 
other individual differences, so adaptive algorithms using them may want to weight 
behavioral data judiciously if used to infer an individual difference attribute in a 
learner. With that said, questionnaires face similar limitations. The data collected 
are only as good as the learner’s level of earnest response. Ideally, researchers or 
designers should have a strong, evidence-based justifcation for selecting behavioral 
variables or psychometric measures to incorporate into adaptive algorithms. 

THEORY AND PRACTICE COME TOGETHER 

No matter which theoretical perspective a researcher or designer uses to investigate 
AT, all AT systems must at minimum be able to observe, assess, and respond. In the 
previous sections, we have provided many examples of each of these elements, but 
those creating their frst AT system may wonder how to execute these elements in a 
way that targets the “sweet spot” and maximizes learning gains. 

Consider learning an automotive maintenance procedure as an example. If some-
one is being trained how to replace a part, there are a number of steps that must be 
followed in a particular order to complete the procedure successfully. For example, if 
you are replacing an engine alternator, you cannot remove the alternator as the frst 
step. Typically, you must start with disengaging the electrical system (i.e., by discon-
necting the battery or any directly connected electrical cables), then release tension 
on the alternator belt before removing the alternator. There are many sub-steps associ-
ated with these steps (selecting the correct tools, removing the right bolts at the right 
time, etc.), and replacement generally replicates these same steps in reverse order. 

A mechanic training someone how to perform this procedure could show them 
step-by-step how to complete this procedure, which would be the ideal approach 
(one-on-one training). An AT system instead might show a step-by-step video of the 
procedure to the learner and then provide them an interactive simulation to try the pro-
cedure on their own. This system can observe many different elements of the learner’s 
behavior in the simulation. Did they select the correct tool? Did they remove the right 
bolt? Was it removed as the correct step of the procedure? How long did it take them 
to execute their next step? These observations represent basic facets of performing this 
procedural task successfully. 



113 Using Artifcial Intelligence to Train Human Intelligence 

However, these observations are meaningless on their own without some kind 
of assessment. A human instructor might observe their learner picked the incorrect 
tool or removed the wrong part and conclude that they lack declarative knowledge 
of the steps of the procedure. If the learner does the wrong step at the wrong time, 
the human instructor may determine that their pupil knows the proper steps, just 
not in the correct order. Similarly, if a learner is taking longer than usual to execute 
the next step, their instructor may assume they are not confdent in knowing which 
step is next. These are all assessments that a human instructor can make about their 
observations of the learner’s actions. They may or may not be correct assessments, 
but they can be useful for determining what kinds of instructional interventions are 
appropriate. 

Determining what to make of these assessments is where instructors and AT 
designers make or break the adaptive experience. This is where the instructor or 
adaptive system responds to a learner’s needs. This is where an AT system exe-
cutes its AI to assist the learner with proper mental model formation. For example, a 
human instructor may observe their pupil taking much longer than usual to get from 
one step to the next step in a procedure. If they determine that this means they need 
help knowing which step is next in the procedure, they might offer verbal cues to 
remind them what they should be doing. An adaptive system could do this in a much 
more subtle way, like highlighting the next step that needs to be taken (e.g., high-
lighting a specifc part to be removed). This is important in both cases, as leaving a 
student alone to practice without any feedback risks them encoding the procedure in 
the wrong order. 

Importantly, responding to learners’ needs depends on a multitude of factors, as 
mentioned repeatedly in previous sections. Nevertheless, with this example, design-
ers can consider the thought process of how observations, assessments, and responses 
can be determined. Once these factors are determined, designers can begin construct-
ing the algorithms that will fuel their AT system. First, a thorough understanding of 
the task-to-be-trained is helpful and should be obtained either through documenta-
tion, educational material, or through other sources of knowledge, such as subject-
matter experts. Second, understanding the training experience (e.g., learning this 
task for the frst time) can provide useful information for which elements of training 
are going to require more attention. Upon learning the task, training a novice how to 
do it can be informative for the designer. Last, designers must understand what level 
of performance is acceptable or demonstrates profciency. As with understanding the 
task, documentation or subject-matter experts may be authoritative sources of this 
information (such as service manual guidelines that suggest it should take 1 hour to 
replace an alternator). 

AT systems designed without the aforementioned requisite information can still 
be adaptive, but the adaptations may not be meaningful if they are not grounded in a 
suffcient understanding of the material to be trained, its context, or an understand-
ing of the learner’s capabilities and learning needs. For instance, how would AT for 
an alternator replacement differ from a novice mechanic to a NASCAR mechanic? 
Novice mechanics may be replacing their own alternator in their spare time on a 
weekend afternoon, whereas a NASCAR mechanic may need to replace an alterna-
tor with haste to get their team’s vehicle back in the race. Similarly, novice mechanics 
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may have greater learning needs than a NASCAR mechanic. Adaptations may adjust 
too far out of the “sweet spot” if they are based on improperly assessed observa-
tions or if necessary observations are overlooked. Without suffcient task-specifc 
knowledge, learner assessments, and guidance from learning science theory, design-
ers may unintentionally create algorithms that push learners away from their sweet 
spot, impose too much intrinsic load at the wrong time, or induce a level of stress 
incongruent with the target task. For example, a well-designed adaptive algorithm 
for a novice mechanic may assess that steps in the procedure are being performed 
out of order and provide feedback on the error describing the negative consequences 
of performing that step out of order. For the NASCAR mechanic, due to the extreme 
time pressure involved, real-time, detailed feedback may cause high cognitive load 
and could cause dynamic instability and lead to failure of getting the car back on 
the track. 

Therefore, having knowledge of the task to be trained allows designers to cre-
ate AT algorithms that are well informed and should approximate toward the 
intelligence of a human instructor. However, these have been simple examples of 
algorithmic interventions for adaptively training a straightforward procedure. This 
represents a basic form of AI, being that it is modeled after how an expert performs 
the task (an expert model) and adjusts the training through algorithmic “rules” 
until the learner is performing in accordance with an expert. In the following sec-
tion, we speculate on some potential uses with more sophisticated applications of 
AI in AT systems. 

GOING BEYOND RULE-BASED ARTIFICIAL 
INTELLIGENCE FOR ADAPTIVE TRAINING 

AI seeks to develop a computer system that behaves like “an intelligent organism,” 
such as an actual human (Raynor, 1999). To this end, AI systems encompass a spec-
trum of complexity driving the desired intelligent behavior, ranging from simple 
conditional logic to more advanced models built from observed data. In the context 
of AT, systems designed to represent an instructor or expert user’s mental model 
of some task and guide trainees throughout their own mental model construction 
generally serve to replicate the “gold standard” of a one-on-one human instructor 
(Durlach, 2012), so they can broadly be considered an application of AI. Indeed, 
the manner in which such systems adapt diffculty to a given learner’s performance, 
individual differences, or other aspects is typically informed by the body of knowl-
edge of subject-matter experts, particularly in the context of intelligent tutoring 
systems that seek to “embed” domain knowledge into computer-based training solu-
tions (Burns & Capps, 2013). Along with the encoding of mental model construc-
tion, the presentation of the training itself might attempt to replicate or mimic the 
social qualities of a human instructor, such as through a virtual non-player character 
(Moreno et al., 2001; Schroeder et al., 2020) that can verbally speak or show emo-
tions in a human-like fashion. Such approaches still fall under the umbrella of AI 
even when they do not specifcally emulate human instructional capabilities, as they 
are designed to replicate human behaviors. 
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As mentioned previously, the “intelligence” within the OAR paradigm can vary 
in complexity for AT systems. Up to this point, we have provided examples of rule-
based AT algorithms (e.g., if learner commits an error on part A, then provide feed-
back message for part A). In general, we refer to AT systems built upon hardcoded 
rules or heuristics as “rule-based systems” (Hayes-Roth, 1985). More precisely, a 
rule is some exact, logical encoding of a specifc set of circumstances, whereas a 
heuristic is a less well-defned encoding that serves as an estimation or approxi-
mation (Raynor, 1999) of a set of circumstances – a tool that is “useful but need 
not guarantee success” (Romanycia & Pelletier, 1985). Typically, these rules and 
heuristics are designed to map observed learner input to performance assessments 
and potentially to training adaptation responses. For example, in a hypothetical AT 
system dealing with paint mixing, one such rule might be that “mixing blue paint 
and yellow paint yields green paint,” and a learner who violates this rule through 
their performance might receive some specifc training intervention to improve their 
mental model formation based on this incorrect action. Rules might also consider the 
number of mistakes made and how this should relate to adaptivity, such as “answer-
ing more than 80% of paint mixing questions correctly should prompt a diffculty 
increase.” In contrast, a heuristic would represent such circumstances in a more gen-
eral sense, such as “mixing two different paints yields a color different than the input 
colors.” Heuristics are often more appropriate sources of adaptivity for complicated 
tasks, where it can be challenging to distill correct or incorrect actions into precisely 
defned conditions (Raynor, 1999). AT systems that incorporate such rules or heu-
ristics seek to “[codify] the problem-solving know-how of human experts” (Hayes-
Roth, 1985) and are therefore valuable tools for guiding learners through mental 
model formation. 

However, the spectrum of AI approaches extends beyond formulations based on 
rules and heuristics; for example, more sophisticated AT solutions may incorporate 
machine learning (ML) approaches that create models implicitly (Mitchell, 1997) 
through automated pattern analysis of learner performance data without requiring 
manual task- and/or individual-specifc development, which may provide more per-
sonalized and/or effective training. Because of task dependency and relevant indi-
vidual differences, developing an effective AT system that represents and informs 
the learner’s creation of a particular mental model could become costly (Shute & 
Zapata-Rivera, 2012), so the ability to build such systems without explicit human 
intervention is a substantial beneft. Training for some tasks is readily represent-
able as a set of steps, rules, or guidelines that a learner should follow, which are 
often amenable to direct implementations in computer-based AT systems. However, 
other tasks might lack an explicit relationship between learner input and desired 
system output, which might better be handled by building models based on sets of 
examples (Ayodele, 2010). Other tasks might require creativity or problem solving 
that is otherwise hard for humans (both subject-matter experts and software develop-
ers) to explicitly formulate (Colin et al., 2016); such tasks might beneft from more 
advanced ML models that instead adapt based on statistical inferences on learner 
outcomes, where an AT system could choose to provide training content to a given 
learner that has previously been observed to promote increased performance in simi-
lar learners. Additionally, ML approaches are capable of modeling aspects of a task 
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beyond what an expert user or instructor might reasonably be able to detect or for-
mulate, such as identifying subtle patterns across very large sets of learner data or 
encoding a signifcantly large body of knowledge (Ayodele, 2010). 

Just as an AT system seeks to adapt to a particular individual, so too must the 
design of the system itself adapt to the task being trained. The application of AI or 
ML requires some analysis of the specifc task, learners, and model under consider-
ation. Not all learning tasks require or beneft from sophisticated adaptation schemes 
beyond simple rules or heuristics; system designers must determine whether the 
development costs of these models outweigh the benefts afforded. Moreover, it is 
important to note that these techniques often perform best as supplemental tools in 
AT development. As such, rather than treating them as replacements for an instructor 
or expert user, one must examine when and how they can be used effectively – and 
when their use is not appropriate. Knowledge from one domain may not transfer to 
another, and AT systems generally incorporate “narrow AI” that focuses explicitly 
on the specifc task being trained (Adams et al., 2012). In other words, AI and ML 
are not necessarily general-purpose “black boxes” that can be automatically incor-
porated into an AT system and lead to benefts in training, and overreliance on the 
use of such “black boxes” may prevent explainability of results or even lead to less 
effective outcomes than a more thoughtfully developed solution (Rocha et al., 2012). 

First, we cover common use cases of AI and ML in AT system development, 
highlighting developmental considerations for which these techniques can be used 
as effective supplements in trainers. In keeping with the spirit of AI, we focus on 
emulating the capabilities of a knowledgeable human instructor and on specifc ways 
to enhance them. In many cases, this still requires subject-matter expertise and/or 
domain-specifc knowledge. Next, we consider limitations of AI and ML approaches 
and describe where their use in AT systems may not be as benefcial. 

WHEN IS AI/ML USEFUL? 

Compared to simpler rule-based approaches, AT systems backed by more advanced 
AI and ML techniques offer many capabilities that can potentially improve the 
observe, assess, and response loop. Broadly, we group these advancements into three 
major categories: 

1. The ability to analyze, model, and predict learner data 
2. The ability to present real-time instructional content 
3. The ability to provide tailored language to and interpret natural language 

from learners 

Data Analysis, Modeling, and Prediction 
A key capability of ML is the analysis of patterns in data to build models describing 
relationships among data and make predictions about novel input without requir-
ing explicit programming (Sugiyama, 2015). For AT systems, relevant data includes 
learner performance, preferences, individual differences, and physiological mea-
surements (e.g., stress; Finseth et al., 2021), which could all potentially be considered 
when tailoring content to a particular learner. As an example, human instructors 
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might note that trainees commonly make a specifc mistake when learning a task, 
so they adjust their training by preparing additional resources related to this mis-
take or even provide these resources ahead of time to prevent the mistake entirely. 
ML approaches may be able to perform this step automatically and in a general 
way across many error sources, without requiring manual analysis. In other words, 
instead of relying on instructor insight, an automated analysis technique may dis-
cover that learner mistakes on one specifc aspect of a task strongly correlate with 
mistakes on another aspect, so the AT system can pre-emptively provide additional 
instruction on this latter mistake source prior to the learner actually making related 
mistakes. 

Furthermore, automated approaches can be effective at explicitly determining 
causality within datasets (Bontempi & Flauder, 2015; Huang et al., 2020). In a train-
ing context, these may manifest as second- or higher-order error sources, such as a 
mistake later in mental model formation that is ultimately due to a misunderstanding 
earlier in the process. Such causality chains may be diffcult for human instructors 
to identify, even with high levels of expertise. ML-based approaches are often better 
able to perform this pattern analysis across large sets of data than human instruc-
tors, such as over many experimental sessions for one learner or across data from 
many learners, and it may be easier for these models to be updated over time as 
task demands and training requirements change than for expert users and developers 
to continuously update an AT system (Ayodele, 2010). While such approaches can 
be fully automated, they may still beneft from human knowledge, such as through 
human-labeled model training sets. 

In general, rule-based systems must take a potentially limitless domain of possi-
ble learner actions and outcomes and categorize them using a fnite set of prescribed 
rules. While subject-matter experts can inform this domain, ML-based AT systems 
may be able to expand the number of recognized categories, leading to instructional 
content or feedback more explicitly tailored to each particular user. For example, 
such a system might be able to generate novel verbal feedback or attentional guid-
ance based on precise actions the learner performed, which may not have been pre-
dictable and therefore may have no corresponding predefned rule or heuristic to 
identify them. Additionally, rules and heuristics may combine in unintuitive ways 
that ML algorithms are better suited to recognize and codify given a set of learner 
data. However, there is a risk that ML algorithms could yield unintuitive or spurious 
relationships among confounds in learner data that may be confusing to the learner. 
This risk will be discussed in greater detail in a later section. 

Real-Time Content 
A human instructor can monitor a learner’s actions in real time and provide feedback 
or adapt diffculty based on these actions or performance metrics. While rule-based 
AT systems often seek to replicate this ability, they may be limited in such real-time 
analysis capabilities. For example, many such systems are only able to provide train-
ing interventions after the learner completes a specifc sequence of actions rather 
than at the start of this sequence, perhaps because this particular chain of events was 
not considered when the rules or heuristics were developed or because the system 
is simply only able to recognize the fnal action in the sequence. This limitation is 
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often present in training systems that adapt based on infrequent learner reports or 
actions; however, a human instructor could also consider the individual steps taken 
to produce those reports or other learning-relevant behaviors (such as body language 
or non-verbal communication). Likewise, a more sophisticated ML model might be 
able to identify such sequences automatically and therefore present feedback in a 
timelier manner, which may prevent the learner from making errors and disrupting 
their mental model formation. To achieve such real-time assessment, AT systems 
can incorporate techniques such as computer vision (see Szeliski (2022) for a broad 
overview) or natural language processing (NLP; see Khurana et al. (2023) for a dis-
cussion of the state-of-the-art) to analyze a learner’s actions or textual/verbal input in 
real time, making them available for adaptivity and assessment purposes. 

In addition to monitoring a learner’s actions, human instructors can also dynami-
cally guide the learner’s attention, perhaps by verbally relaying instructions or by 
pointing to specifc components of the interface. Often, the goal of such guidance 
is to maximize the amount of time a learner spends actively solving a problem (i.e., 
germane load) while minimizing time wasted (i.e., extraneous load) due to errors 
or other obstacles (Merrill et al., 1995). The interface itself can provide guidance 
of this form, such as by highlighting relevant interface elements or even dimming 
irrelevant parts, mimicking the capabilities of a one-on-one tutor. Such capabilities 
can be extended by integrating them with AI or ML techniques: rather than guid-
ing the learner through the interface using prescribed attentional callouts, such as a 
canned tutorial phase, this guidance could instead be generated dynamically through 
these real-time monitoring techniques and present customized interventions to each 
individual learner. 

Language 
Human instructors training learners on a particular task can tweak content dynami-
cally to better tailor this instruction to a given learner. While this can be emulated 
through techniques like diffculty adaptation, with a computer system queuing up 
harder or easier training content in response to learner performance, a human instruc-
tor is further able to adjust the actual presentation of the content – for example, by 
choosing specifc words or phrases to answer questions or address mistakes made by 
the learner. Using NLP techniques, AT software systems can both understand and 
generate natural language in real time (Khurana et al., 2023). 

Many AT systems provide canned or adaptive feedback statements in response to 
specifc learner actions or outcomes (Landsberg et al., 2012a; Schroeder et al., 2020); 
instead, they could incorporate task-specifc language models that can be used to 
generate novel text-based or audio feedback in real time. Compared to hardcoded 
statements, these dynamic messages are advantageous in that they allow for vari-
ability in messages and can be made more explicitly relevant to a particular learner. 
Generally, the domain of feedback or other dynamic messages in an adaptive system 
training a given task is restricted compared to an entire language, so these systems 
may not need to incorporate extensive language models for this purpose. 

Furthermore, natural language generation (NLG; see Gatt and Krahmer (2018) 
for a recent survey) techniques can allow AT systems to more intelligently respond 
to text, speech, or other language-based input provided by learners, emulating the 
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ability of a human instructor to respond with their own textual or verbal output. This 
could include answering learner questions, providing training assessment results, 
presenting dynamic feedback, or verbally guiding the learner’s attention throughout 
the interface. Additionally, NLG can assist AT system designers with other forms 
of content generation beyond feedback messages and real-time question answering, 
such as the creation of training scenario content. As with other uses of advanced AI 
and ML approaches, methods for automatically generating such content still beneft 
largely from extensive input from subject-matter experts. 

POTENTIAL LIMITATIONS OF AI/ML 

In spite of the potential benefts of advanced AI or ML algorithms for AT, there are 
limitations and general factors to consider (see Cubric (2020) for a survey). In gen-
eral, one should consider whether the costs of developing and maintaining a more 
advanced solution outweigh any advantages afforded. Additionally, it is important 
to note that many of the aforementioned benefts typically still require signifcant 
human knowledge and experience during development or even human intervention 
during actual system use. 

Accordingly, we group potential limitations of these methods into three major 
categories: 

1. Lack of applicability and generalizability 
2. High development or maintenance costs 
3. Lack of instructor/learner understanding or trust 

Applicability and Generalizability 
Some learning tasks are simple enough that advanced AI or ML models would con-
fer no appreciable training benefts beyond rules or heuristics. For example, rote 
memorization tasks can often be trained using fashcards, and even simple diffculty 
adaptivity that schedules cards based on success rates may be suffcient to train a 
learner successfully (Whitmer et al., 2021). Likewise, even with more complicated 
tasks, diffculty adaptivity may prove effective even without real-time capabilities 
or more intelligent models, such as scenario-based training that selects subsequent 
training content based solely on an overall performance metric for a given scenario 
(Landsberg et al., 2012b). 

ML models may be limited in their ability to generalize across problems (Adams 
et al., 2012) or populations. For example, speech recognition training data that pre-
dominantly features input from a particular race, gender, or age group may be less 
accurate when analyzing novel input from other groups (Chakraborty et al., 2021; 
Howard et al., 2017). While such models can be effective in improving training out-
comes, those that function as “black boxes” may provide no explicit insights that can 
lead to benefts on other problems. Though this is often true even for simpler task-
specifc AT systems as well, the rules or heuristics used in effective training systems 
may inspire similar rules for other systems more readily than ML models, such as 
through the demonstrated effectiveness of adapting scenario diffculty (Landsberg 
et al., 2012b). 
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Ill-structured problems – those that lack numerical or realistic algorithmic means 
of verifying a potential solution (Simon, 1973) – were once considered the “exclusive 
preserve of human problem solvers” (Newell, 1993). Though advances in AI and 
ML have improved the ability of computers to consider such problems (Colin et al., 
2016), certain problems might be less amenable to automated training approaches, 
such as those that require creativity or insight to solve, feature large input domains, 
or ultimately rely on inexact judgments made by human instructors. 

In some circumstances, developing ML models for use in AT systems could 
even result in less effective training than simpler approaches. This is particularly 
common in cases for which it is diffcult to obtain and label high-quality data for 
use in modeling, such as when only a small population of learners is available. 
Blindly applying ML approaches to a dataset may lead to issues with overftting, 
leading to the identifcation of patterns that truly do not exist (Dietterich, 1995; 
Schaffer, 1993). In life-critical systems or domains where human life is other-
wise at risk, overreliance on ML can have dangerous consequences (Rudin, 2019). 
For example, studies involving conversational agents with natural language capa-
bilities in healthcare often do not discuss patient safety outcomes (Laranjo et al., 
2018). ML models may make inaccurate predictions, and such errors can reinforce 
maladaptive behaviors in trainees, leading to poor training at best and injury or 
death at worst. 

Costs 
Task-specifc ML models may be costly to develop, so AT system designers must 
carefully consider whether they have suffcient resources to build them. Simpler 
rule-based AT systems, however, might be comparatively easier and cheaper to 
design, implement, deploy, and maintain. Additionally, ML models designed to 
enhance training in one specifc task may be limited in their ability to generalize 
to other tasks or populations (Chakraborty et al., 2021; Howard et al., 2017), poten-
tially leading to increased costs when trying to expand the scope of an AT solution. 
Depending on the specifcs of training a model, such as the diffculties of obtaining 
and labeling data and the availability of ML practitioners, retraining the model as 
needs change can also be expensive in terms of time and computational resources, 
making maintenance challenging. As always, these considerations vary based on 
the particular requirements of a potential training system, so system designers must 
carefully evaluate their options. 

Obtaining and accurately labeling suffciently large datasets can be cost prohibi-
tive. The benefts of machine-learning-based AT systems may be negated by the cost 
of actually acquiring relevant data and training models. When designing an AT sys-
tem for new learning tasks, such data may not exist. This can be a signifcant chal-
lenge in domains where the population of learners is limited or where data collection 
is otherwise expensive. Subject-matter experts may be better equipped to design AT 
systems that refect typical learner populations in the absence of readily available 
historical data. Furthermore, the quality of this collected data can have large impacts 
on the effectiveness of trained ML models, limiting both the effectiveness of such 
systems and trust in their use. Issues such as model overftting (Dietterich, 1995; 
Schaffer, 1993) and the bias-variance tradeoff (“the price to pay for achieving low 
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bias is high variance”; Geman et al., 1992) must be considered carefully both during 
data collection and model training. 

With the advent of large language models (LLMs; Kasneci et al., 2023; see Chang 
et al. (2024) for a recent survey), it may be appealing to incorporate more human-like 
speech input or output capabilities in AT systems. However, these techniques can 
require signifcant development time and cost. While the domain of inputs such sys-
tems must recognize and outputs it must produce may be limited, system designers 
must still construct high-quality text and audio corpora, train models, and evaluate 
them for both accuracy and speed. In many cases, having a human-in-the-loop to 
respond to learner input or provide verbal feedback is suffcient or even preferable 
(Dahlbäck et al., 1993), especially when natural human dialogue is fundamental to 
the task being trained. For example, LLMs might struggle with realistically handling 
disagreements and analyzing visual data, and they are often susceptible to adver-
sarial prompts (Chang et al., 2024). 

Understanding and Trust 
Instructors themselves may misunderstand the capabilities of AI and ML systems, 
preventing their effective use. For example, the addition of NLG techniques to 
an AT system may lead instructors to falsely conclude that these systems are true 
one-to-one replacements for human instructors and are able to perfectly respond 
to any verbal or textual learner input. Instructors might also not understand that 
advanced ML techniques cannot simply be incorporated automatically into train-
ing systems – instead, they often require large amounts of actual learner perfor-
mance data to build models and careful consideration regarding the scope and 
implementation of desired capabilities (Rocha et al., 2012). Furthermore, the abil-
ity of these techniques to analyze learner data and make future predictions may 
mislead instructors to assume that they are able to intuit more information about 
a learner’s mental state than is actually possible through ML models; for instance, 
tasks requiring the submission of a series of discrete reports may not expose suf-
fcient information about the learner’s thought process to extrapolate beyond what 
a human instructor could. 

While rule-based AT systems may be limited in capability compared to more 
advanced ML-based approaches, they are generally easier for instructors to under-
stand and use effectively. Though systems that instead adapt based on ML models 
still target mental model formation in learners, the manner in which they achieve this 
might now be abstracted beyond what explicit, predefned rules and heuristics more 
clearly convey. However, models that instead promote transparency, interpretability, 
and/or explainability of ML predictions or decisions, sometimes referred to as white-
box models in contrast to the unknowable inner workings of black-box models, may 
help to bridge this gap (Gunning & Aha, 2019; Rudin & Radin, 2019). However, 
this may come at the cost of limiting the effectiveness of the models (though this 
has been argued to be a myth; see Rudin and Radin, 2019 and Rudin, 2019), and the 
target audience for understanding these models might be those developing them and 
not necessarily those using them. For example, explanations in an image-labeling 
task might indicate which portions of an image were considered relevant for its clas-
sifcation but provide no insight as to why these specifc portions actually led to the 
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classifcation (Rudin, 2019), which may provide understanding to computer vision 
researchers but not to end users relying on the classifer. 

Instructors may also lack trust in advanced AI or ML models (Cubric, 2020). 
Subject-matter experts understand the intricacies of training and performing a given 
task and may feel that automated systems are not truly capable of providing relevant 
instruction, assessment, or feedback to learners. Conversely, there is growing con-
cern among the public that advanced computational agents may automate tasks so 
well that human jobs are threatened (Huang & Rust, 2018), leading to ethical con-
siderations regarding the development and use of such agents. In either case, it may 
prove diffcult to convey the abilities and advantages of these advanced techniques to 
instructors with respect to AT systems, especially in domains where effective train-
ing solutions are already available. 

Additionally, advanced AI or ML approaches may be unintentionally perceived 
more negatively than a simpler system due to a lack of understanding of capabili-
ties or other expectation mismatches on the part of the learner. The push toward 
more human-like training systems may inadvertently trigger “uncanny valley” 
effects (Mori et al., 2012) where the combination of human-like and nonhuman-
like characteristics prompts a negative reception from learners. For example, 
replacing textual feedback interventions with a voice-acted non-player character 
in an AT system may lead to increased learner frustration if that virtual character 
provides the same feedback word-for-word multiple times during a scenario, as 
an actual human instructor would not be expected to do so, but these expecta-
tions are likely not present for simpler text-based feedback. A human instructor 
observing the training environment might be better able to appropriately respond 
to a learner without interrupting them than an algorithm that prompts a particular 
piece of feedback at the moment some conditions are met, potentially disrupt-
ing the learning process. Additionally, perceived mismatches between a virtual 
character’s appearance and voice might prompt “unease” (Meah & Moore, 2014), 
pointing to the importance of aligning multimodal cues with user expectations. 
Learners may also experience increased stress if a system that appears able to 
respond intelligently to verbal questions is unable to accurately do so on occa-
sion, while systems that have no speech recognition capabilities might not elicit 
such stress as such intelligence was never assumed and therefore no assumption 
is violated. 

SUMMARY 

In the present chapter, we have discussed foundations of AT, defning and disam-
biguating it from oft-confused terms, and the theoretical perspectives that are use-
ful for designers and researchers. Throughout, we have provided examples of AT 
design approaches, with a focus on designing rule-based algorithms and consider-
ations for individual differences in the learner and their perceptions of the training. 
Although simpler forms of AI, rule-based AT algorithms can lead to improved learn-
ing outcomes as supported by research literature (Johnson et al., 2019; Marraffno 
et al., 2021; Schroeder et al., 2020). However, AI technology continues to improve 
and become more accessible, and we speculated on appropriate applications and 
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their risks for AT applications. Ultimately, we contend that a human instructor or 
expert’s involvement in the design of AT algorithms remains necessary, but AT sys-
tem designers and researchers should consider where and to what extent AI will ft 
in their system designs. 
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FROM MANUAL TO MACHINE LEARNING: REFLECTING 
ON THE DEVELOPMENT OF AN ADAPTIVE TRAINING 
SYSTEM FOR A MILITARY DECISION-MAKING TASK 

The U.S. military is committed to reforming training and education across the 
services to break away from traditional sage-on-the-stage, one-size-fts-all teach-
ing approaches and provide more modern guide-on-the-side, learner-centered 
approaches. These modern approaches are designed to take advantage of technology-
based training solutions that incorporate individualized lessons, promote critical 
thinking, and provide the right training at the right time. These reforms are described 
in recent publications from military leaders, including the Chief of Naval Operations’ 
Navigation Plan (Gilday, 2022), the U.S. Marine Corps (USMC) Commandant’s 
Planning Guidance (Berger, 2019), and the Army’s Learning Concept for Training 
and Education 2020–2040 (Training and Doctrine Command, 2017). One particular 
technology that can meet the military’s training modernization needs is adaptive 
training. 

Adaptive training is a computer-based training solution designed to simulate 
one-on-one tutoring by adjusting instruction in response to an individual’s per-
formance, ability, or some other characteristics (Landsberg, Astwood et al., 2012; 
Park & Lee, 2004; Shute & Zapata-Rivera, 2012). Adaptive training approaches 
are attractive to military audiences because they have been shown to increase 
learning outcomes and optimize limited classroom time with instructors by pro-
viding students personalized training that does not necessarily require dedicated 
class time and resources (Barto et al., 2020; Bond et al., 2019; Landsberg, Mercado 
et al., 2012; Marraffno et al., 2019; Van Buskirk et al., 2019; Whitmer et al., 2021). 
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Despite these clear benefts, deploying adaptive training solutions at scale has 
proven challenging. For example, adaptive training systems are time-consuming 
and costly to develop because of the domain expertise required to develop appro-
priate content, assessments, and tailored instructional interventions in addition to 
the programming expertise typically needed to build the system. As a result, much 
of the investment in this space has been funded by Department of Defense research 
organizations to meet the needs of particular audiences while also serving as use 
cases to answer important scientifc questions, and it is not usually funded directly 
by the military population who needs the training. However, recent advancements 
in artifcial intelligence (AI) and machine learning (ML) may help alleviate some 
of the time and cost associated with adaptive training system development and 
maintenance by assisting in rapid content creation, student assessment, and feed-
back generation. Perhaps then adaptive training can truly meet its full potential for 
military training and education. 

In this chapter, we describe our approach to developing the Adaptive Trainer for 
Terminal Attack Controllers (ATTAC), which is an adaptive scenario-based training 
system for a critical planning phase of close air support (CAS) missions. Specifcally, 
ATTAC adapts scenario diffculty and feedback based on an individual trainee’s 
performance during a training episode to provide Joint Terminal Attack Controllers 
(JTACs) with reps and sets in realistic, complex decision-making situations. In the 
following sections, we explain more about the task and how ATTAC works, and we 
share results from two training effectiveness evaluations of ATTAC conducted with 
USMC students. Next, we discuss some of the unique challenges we met when devel-
oping ATTAC and explore how AI/ML techniques could be applied to speed up the 
development process, refne the adaptive algorithms as more data are collected from 
trainees, and help to manage the maintenance of ATTAC to stay current as new tac-
tics, equipment, and doctrine become available. Lastly, we recognize that trust is a 
critical element in acceptance of AI/ML-assisted technologies, and we offer sugges-
tions that may increase instructors’ feelings of trust. Overall, this chapter offers a ret-
rospective on the painstakingly manual process we used when developing ATTAC 
and how we would approach its development differently now that AI/ML techniques 
are more readily available and approachable. We hope that our refections here may 
be helpful to other researchers and system developers as they build adaptive training 
solutions in the future. 

WHAT IS CLOSE AIR SUPPORT AND THE ROLE OF 
THE JOINT TERMINAL ATTACK CONTROLLER? 

To understand ATTAC’s training goals, it is helpful to start with an explanation of 
the task and the role of the JTAC. CAS missions are ground strikes on hostile targets 
carried out by aircraft that occur within close proximity of friendly forces. JTACs 
are certifed service members responsible for directing the actions of the attacking 
aircraft. Their role is critical in coordinating between ground forces and aircraft to 
ensure the safe and effective delivery of frepower to meet the commander’s intent for 



 
 
 
 
 
 
 
 

132 AI and Gamifcation Technologies for Complex Work 

the mission. The JTAC’s role in CAS is dynamic and involves communicating with 
both ground units and aircraft pilots, planning the attack, and providing detailed 
target information and clearance for airstrikes. 

Executing a CAS mission involves a complex 12-step process. Game plan devel-
opment is just one of those steps, but it is a critical one that sets the stage for the 
whole CAS mission. During game plan development, the JTAC coordinates with 
the attacking aircraft to determine four key elements of the attack: Type, Method, 
Ordnance, and Interval (TMOI). The Type of attack (i.e., Type 1, 2, or 3) refers to 
the amount of control the JTAC requires over the attack. The Method of attack (i.e., 
bomb on coordinate or bomb on target) refers to how the JTAC and aircraft will cor-
relate the target to confrm they are referencing the same target. The Ordnance is the 
aircraft weapon that will be deployed on the target, and ordnance selection should 
be based on its ability to be effective and prosecute the target safely given other 
contextual factors in the mission. Finally, the Interval is the amount of time separa-
tion the JTAC requires between subsequent attacks by a section of two aircraft. It 
is important to note that sometimes the Type, Method, and Ordnance decisions will 
be the same for both aircraft executing the attack, but with more complicated game 
plans, these decisions may be different for the two aircraft. 

Although the game plan is composed of only four to seven elements (TMO for 
each aircraft plus Interval), the complex interaction between them creates a compli-
cated decision-making process. In addition to the fact that in some situations there 
is more than one effective approach, game plan elements cannot be considered in 
isolation and instead must be treated holistically. This can lead to situations in which 
changing just one element of an effective game plan turns it to one that is no longer 
effective. Given the complexities and nuance to this aspect of CAS, JTAC instructors 
indicated that students tend to struggle while learning this process and would beneft 
from additional practice. 

WHAT IS ATTAC AND HOW DOES IT WORK? 

ATTAC is a standalone adaptive scenario-based trainer that provides trainees with 
reps and sets on CAS game plan development. ATTAC works by presenting scenar-
ios for JTACs to develop an appropriate game plan by selecting the individual game 
plan elements (i.e., TMOI) using drop-down menus at the bottom of the screen. All 
the necessary information to complete the game plan is provided on a single screen, 
and no training to use the system is required. Figure 7.1 shows an example scenario 
from ATTAC. 

Once the trainee submits their game plan, ATTAC assesses the trainee on a three-
point scale based on whether the game plan would be safe and effective to meet the 
commander’s intent. As previously mentioned, each game plan had to be considered 
holistically, since the individual game plan TMOI components are dependent on one 
another and on various features of a given scenario. In addition, game plans could not 
be assessed simply as correct vs. incorrect decisions, since some game plans may meet 
the goal of the mission but contain some judgment error. As a result, each game plan 
could be scored as ideal, acceptable, or unacceptable, and we based this judgment on 
the likelihood of meeting commander’s intent. Ideal game plans were the best possible 
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decisions that would meet commander’s intent effectively and effciently. Acceptable 
game plans may have met commander’s intent, but they could have been improved in 
some way (e.g., it may not have been as effcient or the best weapon-to-target match). 
Finally, unacceptable game plans would likely not meet commander’s intent or may 
not have been possible altogether in the context of the scenario. 

Based on this assessment, ATTAC adaptively responds with two different instruc-
tional interventions, adaptive feedback and adaptive scenario diffculty. The under-
lying mechanisms for how these adaptive interventions worked were grounded in 
principles derived from the Cognitive Theory of Multimedia Learning (CTML; 
Mayer, 2021; see also Johnson et al., 2019 for a deeper discussion of the cognitive 
theory-driven approach to the design of ATTAC). In short, CTML states that learners 
have a limited working memory capacity, so instruction must be carefully designed 
to foster productive cognitive processing and limit unproductive processing to avoid 
situations of cognitive overload (Mayer & Moreno, 2003). First, ATTAC adapts the 
type of feedback the trainee receives based on the trainee’s response to each scenario 
and points to doctrine when possible. Using CTML as a guide, we designed feedback 
messages of varying detail based on ATTAC’s assessment of the trainee’s game plan 
(see Table 7.1 for examples of each type of feedback). For ideal game plans, ATTAC 
provides positive outcome feedback (i.e., “Good job!”). Since the trainee’s game 
plan was correct, any additional information would be extraneous and may impose 
unproductive cognitive processing on the learner (Kalyuga, 2007). For acceptable 
game plans, ATTAC provides feedback about the specifc element that could have 
been improved in the game plan. Since the trainee’s game plan was mostly correct, 
the feedback message is targeted to discuss only the element that needed improve-
ment with the aim to focus the trainee on the necessary information and reduce any 
unproductive extraneous cognitive processing. Finally, for unacceptable game plans, 
ATTAC provides detailed feedback with a description of the thought process behind 
each game plan TMOI element. In this case, the detailed feedback is necessary to 
reduce extraneous cognitive processing and foster productive cognitive processing 
(Johnson & Marraffno, 2022; Moreno 2004), so that the learner receives informa-
tion necessary to understand how an expert would approach the situation. 

Second, based on the assessment of a series of two scenarios, ATTAC adjusts the 
diffculty of subsequent scenarios with the intention of managing the trainee’s cogni-
tive processing demands (see Wickens et al., 2013 for a review of adaptive diffculty). 
ATTAC includes scenarios of basic, intermediate, and advanced diffculty, which is 
determined by the complexity of the scenario (i.e., the number of interacting elements 
that one must consider when making a game plan decision). For example, when trainees 
are struggling and submitting unacceptable game plans, the next set of scenarios will be 
at an easier level of diffculty. Likewise, if trainees are performing well and submitting 
ideal game plans, then they will receive more diffcult scenarios. Finally, for trainees 
who are performing in the middle, they maintain the same level of diffculty. Trainees 
are aware of the scenario’s diffculty level as it is indicated by the color of the framing 
of the scenario screen (i.e., green is basic, yellow is intermediate, orange is advanced). 

In summary, ATTAC was designed with a simple, easy-to-use interface to allow 
JTAC trainees to practice game plan development skills. We relied heavily on the 
CTML to drive the design of the adaptive feedback messages and adaptive scenario 
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TABLE 7.1
Examples of Feedback Messages for Ideal, Acceptable, and Unacceptable 
Game Plans 

Ideal
Top Level 
Feedback

Good job! Your game plan should meet Commander’s Intent…

Aircraft 1 Aircraft 2

Type Method Ordnance Type Method Ordnance Interval

Your game plan Type 1 BOC 30 mm API Type 1 BOT 30 mm API 30 s–1 min

Acceptable
Top Level 
Feedback

Almost there. Your game plan would work, but consider the following adjustments:

Aircraft 1 Aircraft 2

Type Method Ordnance Type Method Ordnance Interval

Consider  
another game 
plan

Type 1 BOC 30 mm API Type 1 BOT 30 mm API 30 s–1 min

Your game plan Type 1 BOC 30 mm API Type 1 BOT 30 mm API 1 min–2 min
Specific  
Feedback

30 s–1 min spacing is recommended for unguided munitions (Reference). Greater 
spacing may result in missed opportunities because it gives targets time to escape.

Unacceptable
Top Level 
Feedback

Not quite. Your game plan is unlikely to be successful.

Aircraft 1 Aircraft 2

Type Method Ordnance Type Method Ordnance Interval

Consider  
another game 
plan

Type 1,  
2, or 3

BOC 30 mm API Type 1,  
2, or 3

BOT 30 mm API 30 s–1 min

Your game plan Type 1 BOC GBU-12 Type 1 BOT GBU-12 1 min–2 min

Detailed 
Feedback

• Both A/C are deadeye. Ground-based lasing with other available ordnance is not 
recommended due to JTAC/TGO operator survivability. Therefore, guns are a 
recommended target-weapon match for suppressive effects.

• Type 1 or Type 2 is acceptable for GP ordnance based on JTAC tactical risk 
assessment.

• It would be acceptable for Ld to start with a BOC attack with guns for 
suppressive effects and provide a mark for −2 to follow on with corrections.

• If a Type 1 or 2 attack is utilized, 30 s–1 min is recommended for unguided 
munitions (Reference). Greater spacing may result in missed opportunities 
because it gives targets time to escape. A window of engagement would be 
appropriate for Type 3.
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diffculty to manage an individual trainee’s cognitive resources effectively. In the 
following section, we discuss two evaluations of ATTAC conducted with USMC stu-
dents to determine whether using ATTAC helped students improve their game plan 
decision-making performance. 

IS ATTAC EFFECTIVE? 

CONTROLLED EXPERIMENT 

To assess the training effectiveness of ATTAC, we conducted a study with students 
enrolled in the Joint Fires Observers (JFOs) course. JFOs engage in similar tasks as 
JTACs, but JFOs do not have authority to grant weapons release during CAS missions. 
Moreover, JFO students complete much of the same coursework as JTAC students in 
the Tactical Air Control Party (TACP) course, which is a required course for JTAC 
certifcation. Therefore, JFO students were a suitable population for this experiment. 

Details of the controlled experiment can be found in Marraffno and colleagues 
(2019), but to summarize here, 52 Marines participated in one of three training con-
ditions. In the Adaptive condition, they completed 35 minutes of training with the 
adaptive version of ATTAC as described above. In the Non-adaptive condition, they 
completed 35 minutes of training with a version of ATTAC that kept the feedback 
and scenario diffculty constant, regardless of how students performed during train-
ing. In the Control condition, students reviewed slides about game plan development. 
Prior to training, all students completed a pre-test that comprised nine game plan 
scenarios of various diffculties and did not receive feedback on their performance; 
these test scenarios were not included in the library of ATTAC scenarios, so stu-
dents were unable to train on them. Next, students completed their assigned training 
condition, and then they completed the post-test, which included the same items as 
the pre-test but in a different order. As shown in Figure 7.2, students in the Adaptive 
condition had the highest pre- to post-test increase compared to those in the Non-
adaptive and Control conditions. In fact, when computing gain scores that accounted 
for how much students could have improved from pre- to post-test (i.e., difference 
between post- and pre-test scores divided by the difference between total possible 
score and pre-test), the results showed that the Adaptive condition’s gain scores were 
400% higher than those in the Control condition and 118% higher than those in 
the Non-adaptive condition. These results demonstrated that training on ATTAC 
for only 35 minutes produced measurable learning gains and that adaptive training 
was an effective technique for a complex decision-making task like planning CAS 
attacks. 

CLASSROOM-BASED EVALUATION 

Based on the success of the controlled experiment, our research team was invited to 
evaluate ATTAC in the context of a USMC course, specifcally in the TACP Primer 
course. This course is typically offered to Marines in artillery units to prepare them 
for the TACP course, and it goes over some of the material that will be covered dur-
ing the TACP course, including game plan development. 
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FIGURE 7.2 Controlled experiment pre-test and post-test performance by condition. 

Note: p is p value. d is Cohen’s d with d = 0.8 generally considered a large effect size, d = 0.5 a medium 
effect size, and d = 0.2 a small effect size (Cohen, 1988). GS refers to gain score: (post-test – pre-test)/ 
(max score – pre-test). 

Following the game plan lecture, seven Marines enrolled in the TACP Primer 
course completed the pre-test, spent 35 minutes training with the adaptive version of 
ATTAC, and then completed the post-test (i.e., the same procedure as the controlled 
experiment but with all participants assigned to the Adaptive condition). We scored 
the tests and found that six out of seven students improved from pre-test to post-test 
(one student did not follow the instructions and failed to fully answer each question 
on the post-test). The lead instructor remarked, “there’s no 35 min lecture I could 
give to get learning gains like that.” As a result, the following day, the instructors 
opted for students to continue to use ATTAC for over one hour during class time, 
while the instructors circulated around the room and interacted with the students. 
Since ATTAC saliently displays the diffculty of the scenarios, instructors could eas-
ily tell which students were having diffculty, because they remained on the basic 
diffculty scenarios, and which students were performing well, because they were 
receiving intermediate and advanced scenarios. The instructors used the context of 
the scenarios to ask the students questions about why they made certain decisions 
and to explain why some decisions would be benefcial in certain situations. At the 
end of this session, we again administered a post-test. This time, we found all seven 
students to improve relative to their pre-test score (see Figure 7.3). Although this was 
not a controlled experiment, the results revealed that students beneftted from get-
ting reps and sets while using ATTAC on its own and also with instructor interven-
tion. Taken together, both studies demonstrated ATTAC to be effective for helping 
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FIGURE 7.3 Classroom-based evaluation pre-test, post-test, and second post-test performance. 

Note: diff is the difference between two test scores. d is Cohen’s d with d = 0.8 generally considered a 
large effect size, d = 0.5 a medium effect size, and d = 0.2 a small effect size (Cohen, 1988). 

students improve their game plan decision-making skills with and without the help 
of an instructor. Consequently, several units decided to continue using ATTAC in 
their courses to provide students practice with game plan development, and it is now 
offcially included in a suite of USMC training tools. 

WHAT WAS CHALLENGING DURING ATTAC 
DEVELOPMENT AND HOW COULD AI/ML HELP? 

Given the complexity of the task and the extensive domain knowledge required to 
conduct it, scenario development, assessment, and feedback generation were chal-
lenges that had to be overcome in the process of building ATTAC. In the early stages 
of the effort, each of these tasks required a manual approach and signifcant input 
and iteration with subject matter experts (SMEs). Our success with this manual 
approach led us to continue this way over the course of the project and build over 
100 scenarios and their associated assessments and feedback statements. But now 
with the beneft of hindsight (and a computer scientist on the team), we recognize 
that AI/ML approaches likely would have been benefcial once we had a corpus 
of validated scenarios to help us to build new scenarios. In the following sections, 
we step through the process of building ATTAC, describe these challenges in more 
detail, and offer areas of opportunity where AI/ML approaches (see Mahesh, 2020 
for a review) could assist in making these processes more effcient. 
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SCENARIO DEVELOPMENT PROCESS 

Creating scenarios presented two primary challenges. First, scenarios needed to be 
relevant to the decision-making process for game plan development and cover a suf-
fciently broad range of missions. To tackle relevancy, we frst identifed the critical 
information required for JTACs to make their game plan decisions by interviewing 
several TACP instructors and SMEs, observing lectures and scenario-based simula-
tions, and reviewing course materials. The overall design of ATTAC was inspired by 
a homework assignment provided during the game plan portion of the TACP course. 
It included a series of short text-based vignettes comprising a commander’s intent; 
the aircraft check-in; and the type, number, and location of the target and nearby 
friendly forces from which students derived their game plan. Further discussions 
with instructors and SMEs led to additional scenario elements that would help drive 
game plans and increase the complexity of the decision-making process (weather 
conditions, time on station, presence of anti-air threats in the area, etc.). 

Once the key scenario elements were identifed, the next hurdle was developing 
scenarios with suffcient realism. Instructors and SMEs emphasized the need for 
scenarios to be realistic to build JTAC trainees’ experience and task fuency to pre-
pare them for the types of missions that they may face during deployment. Critically, 
scenarios needed to include target sets that were relevant to the current priorities 
of the USMC, and targets needed to be placed in locations where a CAS mission 
could be successful (e.g., placing targets close enough to friendlies to warrant CAS 
but not so close that a mission could not be carried out safely). Some other scenario 
realism considerations to be made included ensuring that aircraft check-ins were 
believable, such that the attacking aircraft were carrying ordnance compatible with 
the platform (and in the right quantity), down to details such as having realistic call 
signs, mission numbers, and laser codes to get JTAC trainees oriented to the rhythm 
associated with a real aircraft check-in. Overall, all the scenario elements needed 
to be arranged carefully with an eye for realism to create a variety of scenarios that 
meaningfully captures the breadth of CAS missions that JTACs may experience in 
real-world operations. 

The second challenge with scenario development was creating a scenario library 
that contained a variety of diffculty levels (i.e., advanced, intermediate, and basic) 
so that ATTAC could adapt scenario diffculty based on the trainee’s performance. 
From a CTML perspective, scenario diffculty was based on the number of interact-
ing elements within each scenario that need to be handled in working memory dur-
ing the decision-making process. To that end, working with instructors and SMEs, 
we identifed areas within the scenario elements that could increase (or decrease) the 
number of considerations a trainee would have to draw upon to make an informed 
game plan. One example was to edit the number of weapons available to carry out 
the mission. Having fewer options from which to choose reduces the diffculty of 
the ordnance decision, whereas having more options increases the diffculty. Other 
examples of increasing scenario diffculty include adding anti-air threats to the sce-
nario, including weather complications (e.g., dense cloud layers), and placing friend-
lies in closer positions to the target, because all these considerations may have an 
impact on the game plan decisions. 
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To develop scenarios with varying diffculty, we frst created a sample set of sce-
narios targeted at an intermediate diffculty. From this set of base scenarios, we cre-
ated advanced and basic versions by tweaking the elements described previously. For 
example, to create a basic scenario, we removed elements, and to create advanced 
scenarios, we added elements. To validate these initial scenarios, several instructors 
and SMEs provided feedback on the relevance and realism and rated each scenario’s 
diffculty. The result was a set of scenarios that we could use as templates to expand 
ATTAC’s training library. 

Refecting on the processes for scenario creation, we recognize that AI/ML 
approaches could have been helpful to build scenarios with relevance to USMC train-
ing and assign an appropriate diffculty level to each one. The combination of SME 
input regarding critical scenario elements, SME diffculty assessments, and actual 
trainee performance metrics on these scenarios that we aggregated during ATTAC 
development can serve as labeled data sets for building models of scenario relevance 
and diffculty. This approach could allow for partially or fully automated scenario 
creation and diffculty classifcation in the future. For example, given the breadth of 
critical elements featured in our set of scenarios created with SME input, we could 
build supervised learning models that predict which combinations of such elements 
are realistic for game plan training scenarios. Additionally, we could develop clas-
sifers that predict the diffculty of a scenario or clustering algorithms that group 
scenario diffculty given the presence or absence of these elements. Where available, 
actual trainee performance metrics can also serve as an input to these models. These 
two models together could assist in the creation of new scenarios, whether by clas-
sifying the relevance and diffculty of human-generated scenarios or by developing 
generative models that themselves create new scenarios. 

PERFORMANCE ASSESSMENT PROCESS 

Assessment was another challenging and manual process to overcome during 
ATTAC’s development. During initial conversations with instructors and SMEs, it 
became clear that each individual game plan component (i.e., TMOI) could not be 
scored in isolation, and it was most often the case that multiple game plans could 
successfully accomplish the mission. This posed two challenges. First, because 
game plan components could not be scored individually, the number of game plan 
combinations to consider for each scenario increased exponentially. Second, the 
assessment needed to be able to account for multiple correct answers. This created a 
situation that for any given scenario, there could be upward of 1,600 possible game 
plan combinations that would need to be evaluated, with multiple game plans that 
could be scored as ideal or acceptable. To address these issues, we provided instruc-
tors and SMEs a sample of scenarios we created and asked them to identify ideal 
game plans (i.e., game plans that would effciently satisfy the commander’s intent) 
and acceptable game plans (i.e., game plans that may meet mission requirements 
but may not have been the most effcient or effective approach) for each. We also 
followed up with interviews to discuss discrepancies across SMEs. Based on these 
discussions, we looked for patterns in their game plan selections to create a series 
of heuristics to aid in identifying ideal and acceptable answers for other scenarios. 
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Using our heuristics, we frst identifed all ideal game plans for a scenario, then 
we tested additional game plan combinations that might be considered acceptable, 
which generally concerned game plans that would likely take more time to execute 
or were not the best weapon-to-target match when compared to an ideal game plan. 
Once we selected ideal and acceptable game plans for each scenario, all combina-
tions that were not specifcally identifed in the initial evaluation were considered 
unacceptable. This process was repeated for each of the approximately 100 scenarios 
created for the ATTAC library, resulting in a database of over 1,000 entries of ideal 
and acceptable game plans. Afterward, instructors and SMEs validated these for 
each of the scenarios. To drive assessment within ATTAC, the trainee’s game plan 
was compared to all possible ideal and acceptable game plans in the database for that 
scenario. If a match was found, the trainee was assessed accordingly. If no matches 
were found, the trainee’s game plan was scored as unacceptable. 

As with scenario creation, game plan assessment could potentially beneft from 
AI/ML approaches. Our collection of assessed game plans across our ATTAC sce-
nario library can serve as labeled training data for building a game plan assessment 
classifer. As input, such classifers would use the major components of a game plan 
(i.e., TMOI). Additionally, they would need to consider other specifc aspects of 
each scenario, such as the location of friendlies and weather conditions, as these 
must be factored into game plan selection and considered during assessment. As 
output, these classifers would assign a game plan assessment of ideal, acceptable, or 
unacceptable. The creation of such classifers might require a larger database of sce-
narios that collectively encompasses the domain of possible combinations of inputs 
to ensure that they can effectively model game plan assessment. 

By building classifers over these labeled training data, we can automate the clas-
sifcation of game plans on new scenarios; as opposed to manually deriving pat-
terns from SME-driven assessments of ideal and acceptable game plans to assess the 
remaining possible game plans, we could simply classify all game plans available for 
a given scenario. This would replace the current database of game plan assessments 
and simplify future maintenance of ATTAC. 

DEVELOPING FEEDBACK STATEMENTS 

For each assessment, we generated feedback statements for acceptable and unac-
ceptable game plans (ideal game plans only received minimal outcome feedback 
that said, “Good job!”). For unacceptable game plans, trainees received a detailed 
description of the reasoning behind an alternative ideal game plan broken out by 
TMOI decisions. Detailed feedback messages were generated with instructors and 
SMEs for the sample scenarios, which were used as templates to manually gen-
erate additional feedback statements for other scenarios. Each series of feedback 
statements considered the holistic nature of the game plan to discuss how a given 
game plan element (e.g., TMOI) worked with the rest of the game plan and included 
references to doctrine when available. However, for many scenarios, multiple game 
plans could be considered ideal. To reduce confusion in these cases, we developed 
an algorithm that selected the closest possible match to the trainee’s submitted game 
plan. In this way, we could tailor feedback to the trainee that was the closest to their 
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way of thinking. Although this approach helped align the feedback with the trainee’s 
intent, it also meant generating additional sets of feedback statements for every pos-
sible ideal game plan for each scenario. Overall, since there were over 1,000 ideal 
and acceptable game plans included in our database, our research team generated an 
equivalent number of feedback statements. 

For acceptable game plans, the team identifed the element(s) of the game plan 
during the assessment process that could be modifed to nudge the submitted game 
plan into one that was ideal. For instance, if the submitted interval needed to be 
shorter, the feedback statement only discussed the interval decision and how it could 
be improved within the context of scenario. Any given scenario could have dozens 
of acceptable game plans and their associated feedback statements. 

One avenue for automating feedback statement generation is the development of a 
domain-specifc language model. While our feedback statements have some natural 
variance in sentence structure and word choice, the overall domain of possible state-
ments and topics is fairly limited, as these statements focus on explaining the advan-
tages and disadvantages of a fnite set of game plan components and other scenario 
attributes. Many of these statements may apply to a large number of scenarios, such 
as those with specifc weather conditions that limit the effectiveness of a particular 
weapon. As such, a language model trained on these scenario components and on 
doctrine could drive the formation of realistic, useful feedback statements to present 
to trainees based on their specifc game plan selections. 

LOOKING AHEAD, HOW COULD AI/ML IMPROVE 
ATTAC’s RESPONSE ALGORITHMS? 

Although ATTAC is currently a felded system, there may be opportunities to improve 
it over time as more data are collected from trainees. A particular strength afforded 
by adaptive training is the ability to dynamically update instruction in response to 
the individual needs of each learner, such as by adjusting diffculty or presenting 
additional training examples for topics that the learner consistently misses. Ideally, 
an adaptive trainer would target a level of diffculty that promotes skill acquisition 
for a given learner, such that training content is neither too hard nor too easy. Given 
our collection of actual trainee performance data, there is potential to incorporate 
AI/ML algorithms to fne-tune ATTAC’s adaptive capabilities to better deliver an 
appropriate level of challenge to each trainee, which we predict would lead to more 
effcient and effective training. 

Currently, ATTAC decides to increase, decrease, or maintain scenario diffculty 
based on the number of points awarded to the trainee’s game plans across consecu-
tive scenarios, with ideal game plans receiving the most points. As such, ATTAC’s 
ability to measure skill acquisition is facilitated solely by a holistic view of learner 
game plan assessment over time without consideration of the patterns of incorrect 
responses or aspects of the particular scenario. In other words, ATTAC’s assessment 
algorithms could be improved by including a more sophisticated diagnosis of the 
types of scenarios with which a trainee is struggling. For example, it could be the 
case that a trainee struggles with choosing the correct Interval, given a particular 
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Ordnance. Likewise, scenarios across different diffculty levels may share spe-
cifc scenario elements that a trainee is less comfortable with, such as how weather 
conditions affect Method decisions or their familiarity with the capabilities of the 
attacking aircraft. This type of approach could expand how diffculty is structured 
within ATTAC to deliver targeted scenario elements and better quantify specifc 
skill acquisition beyond just overall game plan assessment. 

For a given trainee, ATTAC could continuously build an individualized model 
that predicts the performance assessment for scenarios with given attributes. Such 
models may better represent clusters of scenarios on which a given trainee would per-
form well or poorly than only scenario diffculty. Rather than simply adapting diff-
culty up or down based on consecutive game plan assessments, ATTAC could queue 
up scenarios on which the trainee is expected to receive acceptable assessments to 
target an appropriate diffculty level. Additionally, for clusters in which a trainee is 
likely to perform poorly, ATTAC could begin by delivering easier scenarios to build 
up the trainee’s familiarity with this specifc type of scenario. Finally, ATTAC could 
use the average predicted assessment of each cluster as means of determining when 
training should end. 

HOW CAN AI/ML BE USED TO MAINTAIN ATTAC? 

One major challenge associated with developing training solutions like ATTAC is 
the ongoing task of adapting to changes in military technologies, capabilities, tac-
tics, techniques, and procedures. The dynamic nature of military practices creates 
a requirement for frequent maintenance of most training systems to ensure that the 
training content is fresh and relevant. CAS training needs to evolve quickly as new 
weapons capabilities are introduced (while older systems are phased out); tactics, 
techniques, and procedures change in response to lessons learned and new capa-
bilities; and areas of operation are updated as new threats emerge. Therefore, it is 
important not only to create effective training scenarios at the start but also to ensure 
that they remain relevant and aligned with ever-changing military strategies and 
technologies throughout the lifecycle of the training system. 

During ATTAC’s initial three-year development cycle, we encountered two 
major changes that highlighted the need to update the scenario library to maintain 
currency for training. First, after establishing the initial set of ATTAC scenarios, 
new doctrinal publications were released that signifcantly altered the deployment 
strategies for certain types of weapons. These modifcations directly affected how 
ATTAC should assess game plans and what the feedback statements should say for 
numerous scenarios that included these weapons, necessitating an immediate update 
to the database. This process required careful attention to detail to make sure that 
ATTAC accurately refected the latest doctrine, which demanded not only an in-
depth understanding of the changes but also a meticulous updating process to ensure 
accuracy and consistency. 

Second, two new weapon systems became available for CAS missions, which 
necessitated additional modifcations to the scenario library. Instructors not only 
requested the inclusion of these new weapons in existing scenarios to replace out-
dated systems, but also new scenarios specifcally designed around these capabilities. 
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Once again, this required manual updates to scenarios and ensured that the asso-
ciated assessments and feedback aligned with the proper utilization of these new 
weapon systems. These challenges emphasized the need to effciently integrate 
changes in both doctrine and emerging technologies to ensure that training remains 
effective and aligned with the dynamic nature of military practices. 

AI/ML techniques could be applied to improve the processes necessary to main-
tain the library of scenarios and their associated assessments and feedback state-
ments. Major manual changes to the databases pose the risk of unintended errors, 
such as reducing the accuracy and relevance of scenario content and the consistency 
of assessments, especially as military practices and training needs change over time. 
However, given updated SME input, the aforementioned AI/ML models for scenario 
relevance and diffculty, game plan assessments, and natural language feedback 
statements can themselves be updated and rebuilt in response to changing needs. 

In general, this would manifest as updates to the labels and weights of the data 
used to build these models. For example, as USMC priorities change, specifc combi-
nations of scenario components may lose relevance or realism, so these components 
can be de-emphasized or otherwise removed from consideration when modeling. For 
natural language models, this would involve changes to the input domain of words 
and topics. In other words, we remap the problem from manually updating database 
entries to tweaking model parameters, which can be smaller in scope, more reliable, 
and more generalizable. Manual database updates may be subject to human error, 
such as inconsistently applying relevant changes across the database, and these risks 
would be present every time training content requires modifcation. However, any 
time models are rebuilt, all resulting updates are directly and automatically applied 
to the entire database of scenarios, game plans, and feedback assessments. As such, 
the same overall framework for building models based on SME input is still appli-
cable, reducing the cost of maintenance once these processes are established. Given 
the crucial nature of domain expert input, we could provide summaries of these 
changes for subsets of affected training content, such as scenarios featuring newly 
available weapons, to SMEs for validation, ensuring that any model updates produce 
accurate, consistent results. 

HOW CAN WE IMPROVE INSTRUCTOR CONFIDENCE 
IN AI/ML APPROACHES? 

In our experience, some instructors are hesitant to adopt adaptive training technol-
ogies, AI/ML notwithstanding. While AI/ML can provide numerous benefts for 
adaptive training system development, there are some notable concerns that might 
affect instructor adoption. In particular, we will focus on issues such as lack of con-
fdence or trust, job security, unrealistic expectations, and safety concerns (Cubric, 
2020) and discuss how they relate to incorporating these capabilities into ATTAC to 
enhance scenario generation, game plan assessment, feedback, and adaptive train-
ing capabilities. Of these focal areas, improving adaptivity through AI/ML is likely 
to be readily accepted, especially given existing studies already showing improved 
training outcomes through adaptive approaches, particularly within military tasks 
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(Barto et al., 2020; Bond et al., 2019; Landsberg, Mercado et al., 2012; Marraffno 
et al., 2019; Van Buskirk et al., 2019; Whitmer et al., 2021). However, instructors may 
be hesitant to trust training content built upon AI or ML technologies, since they 
understand the inherent complexities of generating relevant scenarios at prescribed 
diffculty levels and providing appropriate assessments of and feedback for game 
plans. 

Ultimately, we propose two main avenues to satisfy these reasonable concerns. 
Most importantly, we found that establishing continuous input and validation from 
SMEs was vital to developing ATTAC in the frst place, and this would remain true 
even when moving to more advanced AI/ML techniques. ML models are a potential 
tool for enhancing and better incorporating this domain-specifc knowledge within 
ATTAC, not for replacing it or the need for expert instructors. Our current data sets 
of scenario diffculties, game plan assessments, feedback statements, and learner per-
formance can all serve as ground truth data for ML algorithms to model. Providing 
instructors with measurements of how closely these models match this ground truth 
could promote confdence in their reliability and correctness. Additionally, prior to 
any use in the classroom, we would intend to have instructors fully validate any con-
tent generated by these AI/ML enhancements, essentially continuing the validation 
steps we performed with SMEs during initial ATTAC development. Though less 
common than other AI validation methods (Myllyaho et al., 2021), domain expert 
validation is vital to ensuring the correctness and consistency of new or updated sce-
nario content due to the nuanced nature of game plan development and assessment, 
and continued involvement with instructors will likely assuage concerns of sce-
nario accuracy and consistency and result in more acceptance of these techniques. 
Validation of automated game plan assessments is especially important, as these 
selections have real-world safety concerns. 

Instructors familiar with large language models (LLMs), such as ChatGPT, may 
have concerns about the quality and correctness of dynamically generated feedback 
statements and about the capabilities and reliability of language models in general 
(Kasneci et al., 2023). These may also be more diffcult to validate with instruc-
tors, given that each trainee may receive entirely customized feedback. As such, we 
suggest signifcant SME involvement in building and testing the language model to 
ensure that it employs appropriate words and sentence structures, along with con-
tinued monitoring during training. Furthermore, it is important for instructors to 
understand that a language model for a task like ATTAC feedback generation has a 
signifcantly restricted domain compared to an LLM, which may help ease quality 
concerns. 

Finally, it is important to reiterate that the end product of the training will provide 
direct benefts to instructors, because students may gain individualized reps and sets 
when instructors are unavailable. For example, this can enable all students to come 
into a classroom with a baseline knowledge and understanding, allowing instructors 
to teach to a common baseline and provide opportunities to discuss more advanced 
topics when there may otherwise not be time. In addition, it can also help students 
avoid skill decay because they can use the training to practice the skills they learned 
periodically during the course and potentially as refresher training well after the 
course has ended. 
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DISCUSSION 

In this chapter, we presented ATTAC as a use case to describe the manual pro-
cesses we undertook to develop an adaptive scenario-based trainer for a complex 
military decision-making task and the challenges with maintaining it. After refect-
ing on these challenges, we proposed AI/ML approaches that could increase the 
effciency of some of these processes and facilitate development and maintenance. 
For scenario creation and assessment, we highlighted supervised learning and 
classifcation approaches that could leverage the existing work product to facili-
tate rapid creation of additional content. For feedback generation, we described 
how a domain-specifc LLM could reduce the workload associated with creating 
realistic and useful feedback statements. With these AI/ML approaches, we could 
not only effciently add to the existing scenario library to increase the variety 
of scenarios delivered to students but also reduce the workload for maintenance 
when new weapons, capabilities, and equipment emerge and tactics, techniques, 
and procedures evolve over time. Incorporating these approaches earlier in our 
process may have also increased the effciency of initial content creation. As a 
future research direction, we noted how clustering approaches could be employed 
to improve the adaptive capability of ATTAC by providing scenarios designed 
to target more specifc knowledge gaps and situations where additional practice 
would maximize learning gains. Importantly, these approaches open the door to 
conduct research determining best-practices and identifying novel ways to employ 
adaptive training that maximize learning outcomes in complex domains. AI/ML 
approaches provide opportunities to better assess behaviors and their contributing 
factors and provide more tailored instruction. 

Lastly, a lack of acceptance of AI/ML-assistive technology may be a barrier to 
its adoption. Therefore, it is critical that developers involve instructors in discus-
sions about the design and application of the algorithms and their role in the sys-
tem. Instructors should also be brought in to verify and validate some or all of the 
AI-generated data. Moreover, it is important to ensure that instructors understand 
that the AI/ML algorithms are a supplement to development. The expertise still lies 
with the instructors and the goal of these approaches is not to create expertise but to 
capture it. 

CONCLUSION 

As U.S. military training and education modernization efforts continue to expand 
across the services, adaptive training approaches are likely to play a growing role in 
their training pipelines, since they have been demonstrated to increase learning out-
comes without placing additional burdens on instructors’ time. Historically, building 
effective adaptive training systems has been a relatively costly and time-consum-
ing endeavor, limiting access to this technology to particular use cases. But recent 
advances in AI/ML have the potential to speed up development and reduce costs, 
opening the door to potential widespread adoption of adaptive training solutions for 
many more applications. 
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ACRONYMS AND ABBREVIATIONS 

AI Artifcial Intelligence 
ATTAC Adaptive Trainer for Terminal Attack Controllers 
BOC Bomb on Coordinate 
BOT Bomb on Target 
CAS Close Air Support 
CTML Cognitive Theory of Multimedia Learning 
DoD Department of Defense 
JFO Joint Fires Observer 
JTAC Joint Terminal Attack Controller 
LLM Large Language Model 
ML Machine Learning 
NLP Natural Language Processing 
SME Subject Matter Expert 
TACP Tactical Air Control Party 
TMOI Type, Method, Ordnance, and Interval 
USMC United States Marine Corps 
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Exploring Cognitive 8 
Science Foundations for 
AI-Driven Healthcare 
Simulation 

Shannon K. T. Bailey, Cheryl I. Johnson, 
and John Licato 

INTRODUCTION 

Healthcare professionals must be able to integrate vast amounts of knowledge 
to perform complex tasks with precision and efficiency, with a low margin 
for error. Medical errors are dangerous and costly, accounting for an esti-
mated 40,000–90,000 deaths and costing up to $20 billion a year in the U.S. 
(Rodziewicz et al., 2023). Medical errors can be drastically reduced with delib-
erate practice, and simulation training is used to provide practice and evaluation 
of skills without risk to patients (Lioce et al., 2020). While we know simulation 
training can reduce medical errors (Cook et al., 2011; Okuda et al., 2009), training 
opportunities are often constrained by both time and resources as simulation typi-
cally involves instruction, practice, and evaluation facilitated by human subject 
matter experts. That demand on resources is only increasing as more training is 
needed to combat a shrinking healthcare workforce and keep up with an ever-
expanding amount of medical knowledge. Because simulation is time and resource 
intensive, healthcare simulation is often presented with a “one size fits all” 
approach. 

This “one size fts all” approach to simulation training is not always effec-
tive as individuals may differ in numerous ways. Cognitive psychology provides 
useful frameworks on how people think and learn that can be utilized to tailor 
healthcare simulation to individuals for better learning outcomes. The challenge 
of adapting healthcare simulation to an individual lies in scaling training that 
relies heavily on experts’ time. Recent advances in artifcial intelligence (AI) may 
help to make adaptive training feasible in healthcare simulation by reducing the 
amount of time experts needed during training, thereby expanding the capacity 
to train more learners. This chapter explores how theories from cognitive science 
can be combined with evolutions in AI to advance healthcare simulation, leading 
to more prepared medical professionals with fewer demands on an overburdened 
healthcare system. 
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HEALTHCARE SIMULATION 

Simulation for training healthcare professionals is utilized extensively across all spe-
cialties and levels of care, from teaching foundational tasks in undergraduate medi-
cal education to refreshing high-risk, low-frequency skills of experienced healthcare 
professionals. Simulation is used to teach a range of skills, from the steps to complete 
a medical procedure and diagnostic decision-making to effective communication 
within teams of healthcare professionals. To teach these diverse skills, healthcare 
simulation employs a vast array of simulation types, called modalities (Lioce et al., 
2020). These simulation modalities may include human or animal elements, such as 
standardized patient actors (i.e., role players), animal models, and cadavers, though 
many healthcare training methods today involve use of technology. Healthcare simu-
lation technologies range from physical simulators, including full-body manikins 
with varying degrees of anatomical fdelity and physiological responsiveness, to 
digital simulations, such as computer-based virtual patients or training scenarios in 
immersive environments (i.e., virtual reality [VR], augmented reality [AR], extended 
reality [XR]). 

Choosing the appropriate simulation modality for training a certain skill is an 
important aspect to achieving desired learning outcomes. For example, if the learn-
ing objective is to teach students how to manage a medical emergency, the simulation 
should include key decision-making components, like requiring students to order 
appropriate medications, as well as communication within a team to help develop a 
mental schema of communication patterns. Different simulation modalities may be 
combined to achieve these learning goals. 

What these simulation modalities and methods have in common is that they are 
often facilitated by subject matter experts, including clinicians, simulation opera-
tions specialists, and/or educators. Each training simulation usually requires devel-
oping the content, conducting the simulation, and evaluating trainee performance, 
all with a human expert or multiple experts. Continuing the above example, in a 
complex team scenario, it is diffcult for a single expert to attend to every detail of the 
simulation, evaluate each trainee, and provide immediate, individualized feedback. 
If multiple evaluators are utilized, there may be differences among evaluators that 
lead to issues of inter-rater reliability. Developing and conducting simulation train-
ing is a time-intensive process for the expert, but also limits the number of trainees 
that can participate and the amount of individual tailoring that can be done during 
training, so there remains a lot of room for optimization in healthcare simulation. 

CHALLENGES IN SIMULATION TRAINING 

There are many challenges to the current methods of healthcare simulation train-
ing, including the development of appropriate simulation content or scenarios, the 
accurate and timely assessment of performance, and the need to adapt the simulation 
to the learner’s strengths and weaknesses to prioritize time spent in training. We 
provide an overview of these challenges in Table 8.1. While each simulation would 
ideally be specifc to the task and trainees, this is often not practical with current 
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TABLE 8.1 
List of Challenges in Healthcare Simulation Training 

Challenge 
1. Providing timely, 

accurate 
assessment and 
feedback 

2. Time to develop 
scenarios 

3. Time during 
simulation 

4. Training in 
low-resource 
environments 

Description 
Instructors typically evaluate trainees and 
provide feedback immediately following a 
simulation scenario, which has challenges, 
including inter-rater reliability, 
inconsistent feedback, or missing 
performance data. 

Development of simulation scenarios 
typically involves determining the learning 
objectives, preparing simulation materials 
such as descriptions of symptom 
presentation or history of patients, 
determining what simulators and equipment 
will be required and how they will be 
implemented and by whom, defning 
assessment criteria, outlining pre-briefng 
and debriefng content, determining how 
the case will progress depending on learner 
performance, among many time-consuming 
considerations. Often, clinical educators 
must prepare their own simulation scenarios 
or simulationists must consult with busy 
clinicians to develop scenarios, and this 
work must be accomplished during limited 
time outside of patient care. 

Instructors and trainees have restricted 
hours available to adequately train 
necessary knowledge and skills, so time in 
simulation must be optimized taking into 
consideration individual differences of 
learners (e.g., prior experience on the task) 
and the context for training (e.g., how 
many learners can participate at a time, is 
the training in-situ such that clinical 
resources are at a premium). 

Clinical educators and high-fdelity 
simulations are not always located where 
training is needed, so either trainees or 
educators shoulder the burden of travel 
time and cost to on-site training. Distance 
simulation has been used to address 
geographical barriers to training, but these 
often have the same limitations as noted 
above related to time and resources. 

Possible AI Solutions 
AI may be used to adapt training 
to the individual trainee. Tailoring 
training to the individual’s 
knowledge and performance is 
often more effcient and effective 
than “one size fts all” training 
methods. 

AI may be used to streamline the 
process of simulation scenario 
development by generating 
text-based planning of scenarios, 
including defning learning 
content, assessments, and 
logistics, saving time on clinician 
educators and simulation faculty. 
Generative AI may be useful in 
creating training scenarios, 
including the scenario text-based 
content, images of the clinical 
setting and patient, audio of the 
clinical encounter (e.g., patient 
speech and background noise), 
and sense of touch (i.e., haptic 
feedback). 

AI has the potential to offer 
scalable and reusable training 
opportunities with less space, 
staff, and resources. AI models 
that track trainee performance 
and provide tailored feedback 
could further increase the 
scalability and portability of 
training if scheduling around 
experts’ availability is not required. 

AI may be used in distance 
simulation to assess performance 
and provide feedback, which may 
be useful in situations where an 
expert is not co-located with 
trainees. 
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simulation training methods; yet, advances in AI may be able to streamline these 
challenges in simulation training. 

Furthermore, these challenges in developing and conducting simulation training 
are often interdependent. For example, developing simulation scenarios requires the 
educator to have identifed the learning objectives and plan for how trainees will 
be assessed and debriefed. Performance assessment and feedback should be spe-
cifc and timely, though this is not always the case if evaluators are limited in time 
or resources. We focus on the frst of these challenges, providing timely, accurate 
assessment and feedback, as assessing learner understanding and debriefng is an 
integral part of effective simulation. 

COGNITIVE FRAMEWORKS AND INDIVIDUAL DIFFERENCES 

To tackle the challenge of delivering timely and accurate assessment and feed-
back during simulation, we can leverage frameworks from cognitive psychology. 
Drawing on decades of evidence identifying effective instructional strategies, 
we highlight approaches to enhance the delivery of adaptive simulation. When 
designing medical simulation training, one needs to consider the limitations 
of our cognitive architecture for it to be effective. The Cognitive Theory of 
Multimedia Learning or CTML (Mayer, 2020) describes how people learn from 
words and images and it provides a useful framework to consider when designing 
medical simulations. The central assumption of CTML is that learners’ work-
ing memory capacity is limited, so it follows that instruction must be carefully 
designed to avoid overwhelming the learner’s available cognitive resources. 
While people are learning, they actively engage in several cognitive processes. 
These processes include selecting the relevant words and images, organizing 
these words in a coherent verbal model and the images into a coherent pictorial 
model, and then integrating these models with each other and with their prior 
knowledge. 

While they are engaging in these processes, there are three sources of demand on 
learners’ cognitive processing resources. Extraneous processing stems from poorly 
designed instruction, such as including distracting information or a hard-to-use 
interface, in which learners engage in unproductive cognitive processing that is not 
relevant to their educational goal. Essential processing stems from the complexity 
of the material to-be-learned and is the cognitive processing necessary to mentally 
represent the concepts in their working memory. The learner’s experience level can 
greatly affect essential processing, because as individuals are more experienced with 
material, they can chunk concepts effciently; therefore, they can hold more informa-
tion in their working memory than less experienced individuals. Finally, generative 
processing stems from the learner’s effort to make sense of the information they 
are learning and is productive cognitive processing. These three processing demands 
are considered to be additive, so an increase in one leads to a decrease in capacity for 
the other two. Once a learner’s cognitive processing resources have been depleted, it 
can result in learning decrements due to cognitive overload. Therefore, when design-
ing instruction and simulations, one should aim to minimize extraneous processing, 
manage essential processing, and foster generative processing. 
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COGNITIVE FRAMEWORKS FOR ADAPTIVE TRAINING 

Of course, we understand that individual learners are unique, and they come into 
a learning environment with different experiences and abilities, which play a sig-
nifcant role in how instructional design can affect their cognitive processing. One 
well-cited phenomenon that illustrates this point particularly well is the expertise 
reversal effect (ERE; Kalyuga, 2007, 2022). The ERE states that instructional tech-
niques that may be benefcial for less knowledgeable learners may not be as effective 
(or can even be a detriment) for more knowledgeable learners. In a classic study 
by Kalyuga et al. (2001), inexperienced apprentices received training on program-
ming relay circuits either by problem-solving (i.e., attempting to solve the problems 
themselves) or by worked examples (i.e., providing a similar problem with identical 
steps learners could apply to the problem along). The results showed that the worked 
examples group had higher learning outcomes than the problem-solving group. But 
over time as the apprentices became more knowledgeable about the domain as they 
trained, the benefts for worked examples washed away and the problem-solving 
technique became the more effective instructional strategy. These results suggest 
that the worked examples were initially helpful to inexperienced learners because 
they provided needed information to manage learners’ essential processing. But 
as they developed expertise, the worked examples became redundant and distracting, 
which increased their extraneous processing demands and led to reduced learning 
outcomes. The ERE demonstrates that the way in which instruction is designed can 
be helpful for some learners but deleterious for others, so the optimal learning path 
for each learner may need to be different and adjust to their needs over time. Besides 
prior experience, other cognitive individual differences have been shown to affect 
how people process information during a learning episode, such as spatial ability 
(Hegarty et al., 2007; Johnson et al., 2022) and working memory capacity (DeCaro 
et al., 2008; Just & Carpenter, 1992). 

WHAT IS ADAPTIVE TRAINING? 

Considering that learners have unique needs during the learning process, it follows 
that one-size-fts-all training is unlikely to meet the needs of every learner; as a result, 
adaptive training technology is becoming more ubiquitous across education, govern-
ment, and industry sectors in an attempt to create more effective and effcient training 
for students and workforce. In fact, adaptive training is in such demand currently that 
the market for it is forecast to reach $8.8B in 2028 (Research and Markets, 2023). 
Adaptive training is instruction that adjusts in response to a learner’s performance, 
skills, learning needs, ability, or other individual differences (Landsberg et al., 2012; 
Park & Lee, 2004; Shute & Zapata-Rivera, 2012). In other words, adaptive training 
is a technology-based capability that takes on the role of a human tutor and adapts 
instruction to address an individual learner’s strengths and weaknesses. The term 
“adaptive training” can be considered an umbrella term that incorporates a spectrum 
of adaptive instruction ranging from simple to complex. On the simple end, the train-
ing could start with a pre-test, and the learner would only receive instruction about 
the items that they missed. On the more complex end, there are intelligent tutoring 
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systems that modify the instruction based on a student model that the system devel-
oped from the learner’s previous responses (Ma et al., 2014; Shute & Psotka, 1996). 
Multiple reviews of adaptive training systems have found them to be benefcial for 
learning by increasing learning outcomes and improving learning effciency (Durlach 
& Ray, 2011; Landsberg et al., 2012; Vandewaetere et al., 2011). Despite these known 
benefts, adaptive training techniques have not taken off in the healthcare domain as 
compared to other felds, such as military and K-12 applications, which is likely in 
large part due to the challenges in healthcare simulation previously discussed. 

ADAPTING TRAINING IN HEALTHCARE 

A few key and complementary cognitive psychology concepts that underlie the suc-
cess of many adaptive training systems relevant to healthcare simulation include 
incorporating mastery learning and deliberate practice. Mastery learning is an edu-
cational philosophy that all learners will achieve a high level of understanding (i.e., 
mastery) of the subject matter they are learning before moving on to new material 
(Bloom, 1974). Likewise, Ericsson’s research in expertise revealed that what separates 
true experts from others is that experts engage in focused, effortful practice sessions 
with purpose to achieve ever higher levels of performance, which he called deliberate 
practice (Ericsson, 2004; Ericsson et al., 1993). When applied to educational settings, 
this would mean keeping learners within their zone of proximal development (ZPD; 
Vygotsky & Cole, 1978). Vygotsky characterized the ZPD as the difference between 
what learners can do on their own and what they could do with some guidance and 
instructional scaffolding. To achieve meaningful learning, learners need to be chal-
lenged with tasks just beyond their ability to promote optimal learning opportunities. 
In other words, the ZPD represents a “sweet spot” for learning that is neither too 
diffcult nor too easy for the learner. Putting it all together, adaptive diffculty is an 
instructional strategy that targets these particular concepts and has been shown to 
be highly effective for promoting learning and performance (Wickens et al., 2013). 
From a healthcare simulation-based training perspective, to implement adaptive diff-
culty, one would provide learners exercises or scenarios that are just within their capa-
bilities, and once they demonstrate they have mastered those exercises, they would 
receive more diffcult ones (or start working on a new concept). This process is analo-
gous to how medical residents train with senior clinicians, so applying these concepts 
within adaptive healthcare simulations would not be much of a leap conceptually. 

HOW AI/ML CAN BE USED IN HEALTHCARE SIMULATION 

This chapter has highlighted the challenges faced in healthcare simulation and pro-
posed that adaptive training may be the way to address these challenges based on 
evidence from cognitive psychology. We discussed how healthcare simulations are 
typically presented as “one-size fts all” training, and that adaptive training is not 
well-utilized in this feld. In this next section, we describe the current state of AI/ 
ML and how specifc advances in AI can help address the challenges of healthcare 
simulation by providing new ways to tailor training without the current limitations 
that simulation training faces. 
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WHAT’S BEHIND THE RECENT AI WAVE? 

There is a new push to integrate AI into adaptive training, and to better understand 
why now is an ideal time to implement this approach in healthcare simulation, we 
can look at the evolution of AI that has led to exciting new possibilities. Although 
the fundamental mathematics and mechanics underlying artifcial neural networks 
and how to train them have been an object of study for decades at least (Hendler, 
2008), progress in deep learning was relatively slow through much of the 1980s 
and 1990s, decades often associated with periods that have come to be known as 
“AI Winters” (Hendler, 2008). However, a series of factors, each beneftting the 
others, began to emerge. First, advances in the availability of data, heralded by the 
internet and the decreasing cost of data storage, made it easier to collect large data-
sets that could be used to train and test algorithms. Second, hardware advances 
made it possible to train increasingly large models. Notably, graphics processing 
units (GPUs), originally developed to effciently carry out the calculations used in 
computer graphics, were re-purposed to carry out the calculations used by deep 
learning inference and training steps. And third, AI researchers experimented 
with and discovered variations of neural network layers that could carry out fun-
damental tasks more effectively than human experts. 

Each of these factors synergistically accelerated the others, leading to a renewed 
interest in deep learning in the late 2000s. In the sub-feld of natural language pro-
cessing (NLP), a similar explosion of productivity would take shape with the intro-
duction of the transformer architecture (Vaswani et al., 2017). Unlike in computer 
vision, where input images can be standardized to all have the exact same size, NLP 
must deal with text that can be of arbitrary length. Larger neural networks could take 
larger text inputs, but the number of parameters in the network (and thus the amount 
of data and computational power required to train it) would often increase exponen-
tially at best. The transformer architecture introduced a way to increase input sizes 
while only scaling parameter count by a quadratic factor, thus allowing for signif-
cantly larger inputs. 

A sort of arms race then began, where transformer-based language models (LMs) 
were scaled up to larger and larger sizes, with each increase in size leading to break-
through performances on benchmarks of language-based reasoning (Wang et al., 
2019a, 2019b). Eventually, it was realized that these autoregressive LMs, operating 
in a generative fashion, could perform remarkably well on a variety of tasks that they 
were not specifcally trained on (Brown et al., 2020). And thus, the era of genera-
tive LMs was launched into the public consciousness with the release of OpenAI’s 
ChatGPT, currently based on the generative LM GPT-4 (Achiam et al., 2023). 

AI FOR AUTOMATED SCENARIO ASSESSMENT 

For decades now, the feld of NLP has been heavily shaped by benchmark tasks and 
datasets, with a common complaint being that a research paper would have little 
chance of acceptance at a top conference unless it was able to show at least an incre-
mentally higher performance than the best-known approach on some task. Many 
of these benchmark tasks were (and continue to be) based on datasets curated from 
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human responses to some reasoning problem. For example, the infuential natural 
language inference (NLI) task (Bowman et al., 2015) contains two sentences: a 
premise p and a hypothesis h, and asks a random sampling of participants to deter-
mine the inferential relationship between them (whether p implies h), in a way that 
captures their natural, intuitive sense of what constitutes logical consequence. 

Given that so many benchmark tasks that shaped the development of LMs draw 
from human reasoning, it should be no surprise that LMs have some ability to not 
only emulate a range of human reasoning ability levels, but to distinguish between 
those levels as well. For this reason, an emerging body of work into the intersection 
of psychometrics and AI is gaining traction—both in the use of generative AI to gen-
erate psychometric test items and estimate their psychometric properties, and in the 
use of psychometrics to study the reasoning capabilities of AI systems. Laverghetta 
et al. (2021, 2022) showed that transformer-based LMs could be used to predict the 
item discriminability of NLI problems, but that this predictive ability differed based 
on the category of the problem. They later showed that generative LMs were able to 
create test items with surprisingly good reliability and validity, using a multi-stage 
prompting strategy that did not require signifcant fne-tuning over large datasets 
(Laverghetta & Licato, 2023a, 2023b). This suggests possible applications of LMs 
to reduce the often-costly process of employing large numbers of individuals to 
determine the psychometric properties of test items. Because healthcare simulation 
currently relies on subject matter experts to create assessments and then evaluate 
individuals, the utilization of LMs to distinguish the reasoning ability of learners 
could alleviate the challenge in healthcare training of limited human resources. 

AI FOR INDIVIDUAL DIFFERENCES MODELING 

LMs created in recent years have shown remarkable performance on various bench-
mark tasks inspired by human reasoning (Wang et al., 2019b). Likewise for bench-
mark tasks of predicting a range of human behaviors (Brown et al., 2020). But how 
well do they model individual differences in these behaviors? As it turns out, train-
ing models in a way that optimizes aggregated behaviors of many individuals across 
a large benchmark dataset may produce different predictions than optimizing to 
predict the behaviors of one individual at a time. And the latter may be more impor-
tant for adaptive simulations. For example, Beckage and Colunga (2019) used com-
putational modeling techniques to test competing hypotheses describing language 
acquisition in young children. They found that although previous work (which used 
aggregate modeling techniques) supported one hypothesis, when the focus was on 
capturing language growth for individual children, a different hypothesis was sup-
ported. This suggests that the creation of effective adaptive simulation environments 
should use modeling techniques that take into account that predicting the behaviors 
of an individual may differ from techniques that are optimized toward predicting 
averaged behaviors of many individuals. This is particularly important to address 
the limitations of healthcare simulation’s “one size fts all” approach, as AI-based 
adaptive training can be implemented to achieve optimal outcomes for the individual 
and not just a group of learners. 
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In line with the goals of adaptive training, some researchers in computational 
cognitive modeling have shifted focus to individual differences modeling. Nighojkar 
et al. (2022) used individual differences modeling techniques on the semantic fu-
ency task (SFT) (Welsh et al., 1991), a simple task where participants are given a 
category word and asked to list as many objects that are instances of that category 
as they can. Using the transformer-based LM RoBERTa (Liu et al., 2019), they were 
able to rapidly adapt to a participant after only watching them list a few initial words 
and predict the words the participants would say next with a top-5 accuracy of up to 
26.7%. It is interesting to note that this adaptation was done without requiring exten-
sive training of the model or fne-tuning of the standard RoBERTa model. Although 
RoBERTa is a statistical LM without any a priori claim to be human-like, Nighojkar 
et al. propose a method called hyperparameter hypothesization, by which statistical 
LMs (or AI models in general) can be used to generate testable hypotheses of causal 
explanations of human behaviors and cognitive traits. Likewise, Fields and Licato 
(2023a, 2023b) applied similar individual differences modeling techniques to predict 
player behaviors in collectible card games. The evolution of AI models that focus on 
individual differences are necessary foundations for precise adaptive training mod-
els that predict and assess learner behavior during healthcare simulation. 

AI FOR AUTOMATED SCENARIO DESIGN AND ADAPTATION 

Putting the above two innovations together, it is easy to see how we can auto-
matically design scenarios based on learning and assessment goals, rapidly adapt-
ing the parameters of the scenario to the individual using individual differences 
modeling, and then automatically providing high-quality assessments of the indi-
vidual’s performance. Going back to the Vygotskyan concept of scaffolding, an AI 
could guide the learning of a student (or simulation participant), ideally by ensur-
ing they are exposed primarily to problems in their ZPD (i.e., the set of problems 
more diffcult than those the student would be able to learn on their own, but still 
within their ability to learn with gentle guidance) (Shaffer & Kipp, 2014; Vygotsky, 
1962, 2012; Vygotsky & Cole, 1978). However, scaffolding, and assessing whether 
a problem is in a student’s ZPD, requires a teacher that can estimate both the 
diffculty of a problem, and the current competence of the student. Considering 
the recent advances in AI+psychometrics and individual differences modeling we 
have summarized earlier, implementing such a teacher into artifcial simulations is 
now a very real possibility. 

FUTURE OF AI IN HEALTHCARE SIMULATION 

The diverse challenges in creating effective healthcare simulation, ranging from 
individualized learning content to resource constraints, underscore the need for 
innovation in this feld. This chapter advocates for the integration of AI and ML in 
adaptive training to enhance healthcare education. By exploring cognitive frame-
works, we highlight why specifc instructional strategies are effective and should 
serve as the foundation for AI-based adaptive training, shaping the future of research 
and development in healthcare simulation. 
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Tailoring training to an individual typically requires signifcant time from a 
facilitator to assess the performance of a trainee and provide appropriate feedback 
and adaptation of learning content. Additionally, as learning outcomes are often 
multifaceted, there is a need for multiple dimensions of assessment, feedback, and 
adaptation for trainees to reach desired learning outcomes. While good instruc-
tional strategies suggest that providing prompt feedback and dynamically changing 
a simulation scenario based on individual performance can lead to better learning 
outcomes, it is diffcult for a human facilitator to accurately measure and respond to 
trainees’ performance on multiple levels during a simulation. In response to these 
challenges, AI solutions may address the multi-dimensional considerations needed 
to scale healthcare training. 

In recent years, advances in AI have signifcantly impacted virtually every feld of 
study, and healthcare simulation is no exception. Nevertheless, recent breakthroughs 
in the capabilities of state-of-the-art AI systems are poised to further change the 
way simulations are designed, implemented, carried out, and evaluated. In this chap-
ter, we described the key innovations behind the recent AI wave (focusing on large 
LMs) and highlight some ways in which healthcare simulation technologies are, and 
will continue, to beneft. The future of healthcare simulation is full of potential as 
we investigate different ways in which AI can advance training. Although we have 
primarily focused on advances in natural language processing and large LMs, other 
modalities of generative AI are also seeing rapid progress. Image, sound, and video 
generation are already seeing integration into LLM products such as ChatGPT and 
Bard. In embracing the multifaceted potential of AI, we can meet the challenges of 
healthcare simulation to advance training in diverse and impactful ways. 
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INTRODUCTION 

The evaluation of human behavior and performance is ubiquitous within organiza-
tions and is critical to processes such as performance appraisal and management, 
assessment, and personnel selection. The most prevalent method for evaluating 
human behavior and performance is rating by other humans (Landy & Farr, 1980). 
Selection procedures, such as assessment centers, rely on the expert judgment of sev-
eral trained observers. The development of this expertise is time-intensive and often 
requires extensive training and experience. Although raters are capable of assessing 
human behavior and performance with some degree of accuracy and reliability, they 
are prone to well-documented biases that can introduce various types of system-
atic and random error (Hoyt, 2000; Landy & Farr, 1980; Murphy & Balzer, 1989). 
Traditional rater training has focused on increasing validity and reliability while 
reducing rater error, but the effcacy of these interventions has also been equivocal 
(Bernardin & Buckley, 1981; Roch et al., 2012; Woehr & Huffcutt, 1994). 

Taken together, not only is the collection of human ratings time-intensive and 
subject to biases, the methods for improving the accuracy of these ratings are 
similarly fraught with challenges. Expert rater judgment has traditionally been 
diffcult to replicate, but advances in artifcial intelligence (AI) and machine learn-
ing (ML) have made it increasingly possible to replicate human judgment with a 
high degree of accuracy and reliability (Campion et al., 2016; Condor, 2020). This 
technology has implications for augmenting the assessment of human behavior 
and performance through the creation of real-time decision aids to support rater 
judgment, and through the delivery of personalized, adaptive feedback and train-
ing. To address this opportunity, the present chapter provides a research-informed 
review of traditional rater training methods and highlights the ways AI can rep-
licate expert judgment, increase effciency, reduce bias, and improve validity and 
reliability. The process of developing AI models is described, along with a pre-
sentation of best practices that utilize these methods. Finally, we provide concrete 
recommendations for both researchers and practitioners, including model develop-
ment, improving stakeholder perceptions, building trust in AI, and related ethical 
considerations. 

https://doi.org/10.1201/9781032701639-9


 

164 AI and Gamifcation Technologies for Complex Work 

THE ROLE AND LIMITATIONS OF SUBJECT 
MATTER EXPERT RATINGS 

The majority of ratings made about human performance are done subjectively, that 
is, by other humans. This process is critical to the functioning of organizations 
because it has historically been one of the most effective ways of simplifying copi-
ous qualitative information into quantitative data. Once in a quantitative format, this 
information enables comparisons between individuals and facilitates answers to cru-
cial questions such as whom to hire, whom to promote, and how to ensure equitable 
employee compensation. And despite large advances in almost every other aspect of 
how organizations function, human ratings are still prevalent in some of the most 
important decisions made in organizations, which poses several specifc challenges. 

At a minimum, it is important that these human ratings are consistent across rat-
ers and provide meaningful information to decision-makers. These two aspects of 
ratings are commonly referred to as reliability and validity, respectively. If a score 
given to an employment interview is not consistent across interviewers, it cannot be 
useful. Similarly, if it fails to provide a meaningful summary of the potential of a job 
candidate, even with consistency across raters, it cannot provide value to an organi-
zation. Reliability can take many forms, though for human ratings the most impor-
tant is inter-rater reliability. This type of reliability refers to the extent two raters who 
are evaluating the same phenomenon give the same rating. This can be quantifed in 
several ways, such as rWG or Cronbach’s α for quantitative data, or Cohen’s κ for cat-
egorical ratings. Ultimately, the purpose of these statistics is to estimate the degree 
of agreement or consistency in scores (i.e., two raters may consistently be one point 
off from each other, but otherwise agree on ranking of ratees). Common rater train-
ing approaches (which will be described later in this chapter) often aim to increase 
the inter-rater reliability of raters. In organizations, one of the limitations of human 
raters is that it can be costly to train and maintain a pool of expert raters, not to men-
tion issues such as rater drift that can necessitate periodic retraining. 

After establishing some form of reliability, we can consider aspects of validity, 
which is defned as “an overall evaluative judgment for the degree to which empiri-
cal evidence and theoretical rationales support the adequacy and appropriateness 
of interpretation and actions based on test scores or other modes of assessment” 
(Messick, 1989). Basically, validity assesses whether the measurement accurately 
captures what you intend to measure. If a job interview is meant to provide a sum-
mary of potential if a candidate was hired, these scores can be considered valid if 
they predict performance. Similar to reliability, validity can be operationally defned 
in several ways such as criterion-related validity, where expert ratings are later com-
pared to outcomes such as job performance or turnover, or construct validity, where 
scores on a particular tool are compared to existing tools that measure something 
similar. For a score to be useful, it needs to be both reliable and valid. 

Given its importance to organizations and inherent limitations of subjective rat-
ings, the topic of expert ratings has been studied, debated, and researched for well 
over 50 years (Guion, 1965). Over time, we’ve learned a signifcant amount regard-
ing the specifc limitations of human raters, as well as best approaches to train them. 
One of the largest limitations to human ratings is cognitive bias, which is a systematic 
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and identifable set of errors commonly made by human raters. For example, the halo 
effect was identifed over 100 years ago (Thorndike, 1920) to describe the tendency 
to give high scores on unrelated aspects of performance because of something a 
ratee does well. That is, if you are rated on several aspects of performance such as 
teamwork, communication, and work quality, an effective communicator may get 
higher scores on other aspects. Conversely, the opposite effect may occur where sev-
eral constructs receive low ratings because of one thing they do poorly, such as con-
sistently missing deadlines leading to universally low ratings. Other biases include 
the similar-to-me effect, where we prefer individuals that look or think like we do, 
contrast effects, where somebody doing multiple raters may be biased by perceptions 
of previous candidates (e.g., a really high-quality candidates makes other candidates 
after them appear worse than they really are), or the overgeneralizing bias, where 
raters may make assumptions about somebody because of their group (e.g., assuming 
all candidates from a top business school are great candidates). 

While there are a number of cognitive biases that impact human raters, the prob-
lems these biases pose are universal: they have the potential to undermine the reli-
ability or validity of a given process. Some may be costly, such as if a White job 
interviewer consistently rates Black applicants lower than White ones, due to the 
similar-to-me effect. This type of bias could lead to lawsuits against an organization. 
Other biases, such as overgeneralizing, can lead to suboptimal hiring as lower qual-
ity applicants may be passed forward based solely on the reputation of the school 
they attended, which typically produces high-quality candidates. While steps can be 
taken to mitigate the impact these biases can have on decision-making, it is hard to 
completely overcome or eliminate them in practice. And beyond these biases, there 
are other limitations and downsides to the use of expert ratings. 

Adding to the concerns noted above, the process of collecting human ratings of 
behavior and performance is often perceived as time-consuming and expensive, not 
only in the context of performance management but also during selection processes, 
including interviews and assessment centers. This perception stems from the belief 
that such processes are excessively subjective, resource-intensive, and ultimately 
unreliable, as noted above. As just one example, it is estimated that the average 
manager and employee spend 210 and 40 hours on performance management activi-
ties, respectively (Corporate Leadership Council, 2012). For a company of 10,000 
people, this level of effort translates to a cost incurred of 30 million USD annually 
(Corporate Leadership Council, 2012). 

Clearly, the proper assessment and evaluation of personnel require a signifcant 
investment of time and effort, which can be particularly burdensome for a single 
rater, let alone multiple raters, as is often required in the hiring process. This pro-
cess, particularly at scale (e.g., large-scale hiring programs), can impact the eff-
ciency and desired outcomes for organizations, such as reduced cost-per-hire or and 
time to offer. 

Although applications of ML offer promises for gained effciencies in this area, 
the development of these models has historically required considerable effort, time, 
and resources as well. Collecting the labeled data necessary to train, develop, and 
refne AI models can be similarly costly and time-intensive when relying solely on 
SMEs. However, an alternative approach is to leverage online crowdsourcing, which 
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involves recruiting a large number of non-experts through online channels, rather 
than a small number of specialists. This method boosts effciency by enabling the 
collection of vast amounts of data required for building ML models. While a single 
non-specialist may not individually exhibit the desired level of performance, when 
their responses are considered collectively, there is typically considerable conver-
gence with ratings provided by experts (Ipeirotis et al., 2014). 

Considerable advancements in Natural Language Processing (NLP) in recent 
years have led to notable enhancements in technologies that utilize AI and human 
language. These advancements have resulted in a reduced requirement for extensive 
training data and have consequently minimized the need for extensive human anno-
tation to generate high-quality classifcation models. 

While emerging technologies hold promise in enhancing and improving the pro-
cess of collecting high-quality ratings of human behavior and performance, it is 
critical to establish a foundational understanding of traditional rater training strate-
gies. This section will provide an overview of these strategies, highlighting their 
distinctions, effectiveness, and limitations. By doing so, we can better appreciate the 
potential impact of newer technologies in this feld. 

RATER TRAINING 

In light of the historical context and challenges associated with SME ratings, it is 
imperative to explore the strategies aimed at improving the validity and reliability 
of human ratings. Rater training, a systematic procedure designed to improve rat-
ing accuracy by reducing rater biases (Bernardin & Buckley, 1981; Hoyt, 2000), is 
widely accepted as a fundamental method for improving SME ratings (Roch et al., 
2012). Effective rater training is critical as it promotes fair and valid evaluations, 
which, in turn, play a crucial role in shaping human resource strategies and decision-
making (Banks & Murphy, 1985; Landy & Farr, 1980). This section summarizes tra-
ditional rater training strategies, including rater error training (RET), performance 
dimension training (PDT), frame-of-reference (FOR) training, and behavioral obser-
vation training (BOT; Woehr & Huffcutt, 1994), and evaluates their effectiveness 
and limitations. 

TRADITIONAL RATER TRAINING STRATEGIES 

RET is a method developed to mitigate biases that infuence performance evaluations, 
such as halo, leniency, recency effects, and attribution errors (Athey & McIntyre, 
1987; Bernardin & Pence, 1980). RET emerged as a response to the prevalent psy-
chometric errors in performance appraisal ratings, notably halo and leniency errors 
(Conway & Huffcutt, 1997; Woehr & Huffcutt, 1994). The training protocol educates 
raters about biases and equips them with strategies to circumvent these errors during 
performance evaluations. While evidence suggests that error training can diminish 
halo and leniency errors (Borman, 1979; Pulakos, 1984), it has also been critiqued 
for potentially compromising the overall accuracy of ratings (Bernardin & Pence, 
1980; Borman, 1979). Some scholars have proposed that what are typically classifed 
as rater errors could indeed be refecting actual score variance (Arvey & Murphy, 
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1998; Hedge & Kavanagh, 1988). Moreover, there are apprehensions that error train-
ing may result in a “meaningless redistribution of ratings” (Smith, 1986). Despite 
these critiques, error training continues to be a widely adopted approach, although 
the focus on rater errors has been somewhat reduced in recent years due to a shift in 
the literature toward enhancing rating accuracy (Gorman et al., 2015). 

PDT is a strategy that was developed as a response to the inconsistent results of 
RET. PDT focuses on enhancing the cognitive processing of information by raters to 
improve the accuracy of ratings (DeNisi et al., 1984; Feldman, 1981). In this train-
ing method, raters are educated about the specifc performance dimensions that are 
being evaluated, including defnitions and rating scales. However, feedback regard-
ing their actual ratings is not provided. The fundamental premise of this approach 
is that making judgments specifc to each performance dimension enhances the 
accuracy of the ratings (Woehr, 1992; Woehr & Huffcutt, 1994). Research gener-
ally supports the effectiveness of this training approach, but it can be infuenced by 
various factors such as the characteristics of raters, the complexity and familiarity of 
the tasks being rated, and the performance dimensions being evaluated (Bernardin 
& Pence, 1980; Bernardin et al., 2009). Therefore, a careful design of the training 
program, considering these factors, is crucial for its success. 

FOR training (Bernardin & Buckley, 1981) is an extension of PDT, with the 
addition of practice and feedback sessions. This training method involves explain-
ing the performance dimensions, discussing behavioral examples, developing 
standardized evaluation rubrics, and allowing raters to make practice ratings 
while receiving feedback on their rating quality (DeNisi & Murphy, 2017). The 
goal of FOR training is to establish a shared framework that minimizes individ-
ual interpretations and biases, thereby aligning raters’ understanding of perfor-
mance dimensions and standards and enhancing inter-rater reliability and validity 
(Roch et al., 2012; Woehr, 1994). FOR training has been empirically proven to 
signifcantly enhance the accuracy of performance ratings. This is evidenced by 
improved inter-rater reliability and agreement when compared to control groups 
(Roch et al., 2012; Woehr & Huffcutt, 1994). Furthermore, numerous studies have 
demonstrated that FOR training can lead to improved rating accuracy (Athey & 
McIntyre, 1987; Bernardin & Pence, 1980; McIntyre et al., 1984; Pulakos, 1984, 
1986; Schleicher & Day, 1998; Woehr, 1994). 

Meta-analytic results from Woehr and Huffcutt (1994) and Roch et al. (2012) 
demonstrate that FOR training enhances rating accuracy, exhibiting substantial 
average effect sizes of d = .83 and d = .50, respectively. However, despite the 
proven effectiveness of FOR training, it has been critiqued for not adequately 
addressing the role of memory in the rating process, as it does not provide raters 
with strategies to process and remember behavior information for later recall, 
which is crucial for rating accuracy (Landy & Farr, 1980; Noonan & Sulsky, 
2001; Sanchez & De La Torre, 1996). Another critique is that FOR training 
may lead raters to perceive certain behaviors that were not actually exhibited 
(Noonan & Sulsky, 2001; Sulsky & Day, 1992). Therefore, while FOR training 
can enhance rating accuracy, it is not a complete solution and should be used in 
conjunction with other strategies to improve the overall effectiveness of perfor-
mance evaluations. 
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Lastly, BOT is a technique that was developed in response to the increasing rec-
ognition of the importance of accurate behavioral observations in ratings (Woehr 
& Huffcutt, 1994). This technique acknowledges the fact that raters often have to 
function in complex environments where they may be distracted from accurately 
observing performance due to multiple tasks and demands (Noonan & Sulsky, 
2001). BOT typically requires raters to take notes during performance observa-
tions or to keep a record of observations over a prolonged period. The objective 
is to improve the accuracy of observations, thereby subsequently enhancing the 
accuracy of performance ratings. Studies have indicated that BOT can signif-
cantly decrease rating errors (Bernardin & Walter, 1977; Latham et al., 1975), 
increase the accuracy of observations (Thornton & Zorich, 1980), and improve the 
accuracy of ratings (Hedge & Kavanagh, 1988; Noonan & Sulsky, 2001; Pulakos, 
1984). However, the effectiveness of BOT has been critiqued. Criticisms include 
the absence of a standard defnition (Noonan & Sulsky, 2001) and practicality con-
cerns, such as the time-intensive requirement of diaries and note-taking. 

LIMITATIONS OF TRADITIONAL RATER TRAINING 

Traditional rater training strategies, while effective in many respects, are not without 
their limitations. One of the key challenges is the sustainability of improvements and 
the transfer of learning from training to the actual rating process (Dierdorff et al., 
2010). Brief training sessions often fail to instill lasting changes (Arthur et al., 2003), 
and the enhanced rating accuracy observed immediately after training frequently 
reverts back to baseline levels over time. Furthermore, the effects of training do 
not reliably generalize across various performance constructs or contexts (Arvey & 
Murphy, 1998). Another signifcant limitation is the inability of these strategies to 
fully address ingrained cognitive biases and limitations (Bernardin & Pence, 1980; 
Borman, 1979; Smith, 1986). For instance, certain approaches like FOR training 
do not account for issues like memory errors, perception biases, and halo effects 
(Bernardin et al., 2009). 

The persistent human tendency toward biases like central tendency and recency 
poses additional challenges. Brief interventions have been unable to fundamentally 
change these tendencies. Lastly, the resource demands of traditional rater training 
limit its feasibility and scalability. Approaches like BOT and in-depth FOR training 
require extensive investments of time and effort. The need for ongoing reinforce-
ment and practice poses additional burdens, hampering adoption and consistent 
application across organizations. While traditional rater training strategies have 
made positive impacts, they are constrained by inherent cognitive and practical 
limitations. This underscores the need for more personalized, data-driven, scalable 
solutions to fundamentally enhance rater competencies and improve rating validity 
and reliability. 

EMERGING AI-ENHANCED TRAINING SOLUTIONS 

Feedback is a critical component of rater training programs, serving as a mechanism 
for raters to calibrate their judgments, correct biases, and develop their overall rating 
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skills (Balcazar et al., 1985; London, 2003). However, traditional feedback meth-
ods have limitations in providing consistent, specifc, and individualized feedback 
(Brett & Atwater, 2001). This presents a promising avenue for the application of AI 
technologies. 

The emergence of cutting-edge AI technologies, such as generative AI, presents 
an opportunity to address these feedback limitations and enhance the rater train-
ing process. AI can potentially improve the provision of feedback by offering real-
time, personalized insights for raters. By analyzing rating patterns, AI can provide 
comparative feedback, identify biases and errors for corrective feedback, and offer 
tailored suggestions for rater development. This immediate and personalized feed-
back could signifcantly enhance the effectiveness of rater training, helping raters 
build self-awareness and mitigate biases, thereby enhancing the overall accuracy and 
reliability of ratings. The emergence of AI technologies offers a promising solution 
to these challenges. The next section will delve deeper into the role of AI in SME 
ratings, exploring how AI can replicate expert judgment, reduce biases, and support 
rater training. 

THE ROLE OF AI IN SME RATINGS 

After examining traditional rater training strategies, we shift our focus to the intersec-
tion of AI and SME ratings. SMEs, with their specialized knowledge, play a pivotal 
role in the selection and assessment of employees, especially in analyzing candidates’ 
natural language responses during interviews—a task increasingly being automated by 
AI technologies. This shift signifes a notable surge in AI adoption within organiza-
tional sciences, increasingly evident in the expanding research literature (Campion & 
Campion, 2023), and is refected in the growing number of companies utilizing these 
technologies to enhance HR processes. In this section, we explore research highlight-
ing AI’s effectiveness in predicting SME ratings of textual responses. We also delve 
into how AI can be incorporated into rater training programs, potentially overcoming 
some of the limitations posed by traditional rater training. 

ARTIFICIAL INTELLIGENCE IN SME RATINGS: AN OVERVIEW 

Recent years have witnessed considerable progress in applying AI to SME ratings, 
a trend documented in a growing body of research (Campion & Campion, 2023; 
Campion et al., 2016; Hernandez & Nie, 2023; Hickman et al., 2022; Koenig et al., 
2023; Landers, 2019; Putka et al., 2018; Speer et al., 2022; Thompson et al., 2023). 
Much of this progress has been driven by advancements in NLP, ML, and deep 
learning (DL), which have provided innovative methods for analyzing textual data 
and replicating expert evaluations and ratings. Research indicates that AI models can 
closely align with human SMEs in assessing candidate responses against various 
competencies (Koenig et al., 2023; Thompson et al., 2023). Replicating SME ratings 
with AI suggests potential improvements in reliability, validity, and effciency, as well 
as a reduction in biases (Campion et al., 2016). This section reviews the relevant 
research to explore these developments. 
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AI techniques, especially in the domain of text analysis, offer sophisticated meth-
ods that go beyond data processing. NLP approaches such as bag-of-words (BoW) 
and text embeddings represent text as numbers that capture linguistic features that 
can be used as inputs in ML and DL models. BoW is a straightforward approach 
where text is represented as vectors of word occurrences (Jurafsky & Martin, 2023). 
Text embeddings are a more complex representation where text is converted into 
numerical vectors that capture deeper linguistic and semantic relationships (e.g., 
context and meaning; Jurafsky & Martin, 2023). These representations allow ML 
models to accurately predict outcomes by recognizing patterns in textual data, align-
ing with human evaluative judgments. A notable example of this is the study by 
Putka et al. (2022), which utilized BoW to estimate SME job analysis ratings. In 
their application, they applied BoW to process and analyze job descriptions and task 
statements, converting the textual content into numerical features. These features 
were then used to predict SME importance ratings of KSAOs for various job roles, 
effectively replicating the SME job analysis process. The study demonstrated a high 
correlation (between .74 and .84) with actual SME ratings across various KSAOs, 
highlighting the practicality and validity of using NLP for job analysis. The fndings 
underscore the potential for NLP-based techniques to streamline and enhance tradi-
tional HR processes, particularly in areas like job analysis where understanding and 
quantifying KSAOs are crucial. 

Building on the application of NLP techniques, another AI method making these 
advancements possible is ML. ML encompasses algorithms that enable statistical 
models to learn patterns in data and make predictions. Within ML, DL represents 
an advanced subset characterized by its neural network architectures. DL differenti-
ates itself from traditional ML approaches by its ability to automatically learn and 
extract relevant features directly from raw data, thereby eliminating the need for 
manual feature engineering. This capability enables DL models to excel in tasks 
involving complex data, pattern recognition, and prediction. When coupled with 
text embeddings, DL models become exceptionally adept at detecting complex pat-
terns that represent subtle linguistic nuances and semantic meanings within text. For 
example, ML and DL models can be trained on datasets that include SME ratings of 
textual responses, effectively learning and predicting how raters would likely score 
new responses (Campion et al., 2016; Koenig et al., 2023; Thompson et al., 2023). 
Consequently, these AI systems can closely replicate the scoring and evaluation pat-
terns of SME raters who are experienced in making evaluative judgments based on 
language assessments (Speer et al., 2022). 

Thompson et al. (2023) present another compelling case study, where DL was 
utilized to score the open-ended responses of pre-employment assessments. Their 
study analyzed job applicant data from virtual assessment centers, focusing on three 
distinct algorithmic methods: BoW, Long Short-Term Memory (LSTM) models, 
and Robustly Optimized Bidirectional Encoder Representations from Transformers 
(RoBERTa), a transformer-based DL model. They developed assessment items and 
incorporated SME ratings for job-related competencies, creating a dataset for model 
training. The trained models were then applied to score candidates’ text responses 
on various competencies. Notably, the outcomes showed a high degree of alignment 
with human expert ratings, with RoBERTa achieving an average correlation of 0.84. 
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This was on par with the consensus inter-rater reliability achieved by multiple expert 
raters, averaging at 0.85. 

Leveraging AI methods, we now have the capability to enhance a variety of 
assessment-related processes. This includes applications such as replicating SME 
ratings, improving reliability, boosting validity, increasing effciency, mitigating 
biases, and automating job analysis tasks (see Table 9.1). Each of these areas show-
cases how AI can effectively augment and streamline the evaluation and selection 
process. This refects the evolving role of AI in automating and enhancing certain 
tasks within assessment and selection. Although human expertise remains indispens-
able for many tasks, an expanding body of research suggests AI’s growing potential 
to overtake certain scoring and evaluation tasks, often done manually by SMEs. 
An optimal approach seems to be a thoughtful combination of human insight and 
machine effciency. AI not only brings advantages in effciency, consistency, and bias 
mitigation but also serves as a valuable supplement to human judgment (Campion 
& Campion, 2023; Hernandez & Nie, 2023). Moving forward, the next section will 
explore how AI could transform rater training systems. We aim to explore a range 
of AI strategies, poised to enhance the effectiveness, accuracy, and fairness of rater 
training. 

TABLE 9.1 
AI Innovations in SME Ratings and Assessment Processes 

Application Description 
Replicating SME Machine learning models can be trained on datasets of assessment responses 
Ratings previously evaluated by SMEs. These models learn to discern patterns in the 

data, enabling them to predict ratings with a high degree of accuracy that 
often aligns closely with human SME ratings. 

Improving Reliability AI scoring models enhance reliability by applying consistent scoring rules 
across all assessments. Unlike human raters, AI models are not subject to 
fatigue, bias, or variance in judgment, leading to more consistent and reliable 
ratings over time. 

Boosting Validity AI models, especially those trained with accurately labeled datasets, demonstrate 
strong criterion-related validity. These models can capture subtle indicators 
within assessment responses that correlate with key performance outcomes. 

Increasing Effciency Automated AI systems streamline the scoring and evaluation process, enabling 
assessment of large volumes of candidate responses. This automation 
signifcantly reduces the time and resources required, leading to cost savings 
and expedited decision-making in talent selection. 

Mitigating Biases AI systems can minimize biases in rating processes and predictions. By 
incorporating ML models that focus on multi-objective optimization, AI can 
consistently apply scoring rules, analyze patterns indicative of bias, and 
adjust to optimize for fairness alongside accuracy. 

Automating Job AI can replicate the process of SMEs in conducting job analyses by processing 
Analysis and analyzing job descriptions and task statements. Using NLP and ML 

techniques, AI can identify and quantify the importance of KSAOs, 
automating a traditionally labor-intensive process. 
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AI-ENHANCED RATER TRAINING 

In light of recent advancements in AI within the domain of SME ratings, a perti-
nent question arises: “How might these emerging methods be effectively applied to 
rater training?” Recognizing the accuracy and reliability of AI models in replicat-
ing SME ratings, it’s important to consider both scenarios where AI might replace 
human raters and where it enhances human rater training. This section introduces 
several innovative AI strategies aimed at augmenting rater training. These strategies, 
designed to improve human rater accuracy, detect and mitigate biases, and provide 
customized feedback, have the potential to foster development and refective practice 
among rater trainees. 

Rater Calibration 
One potential strategy is to utilize AI models for rating calibration. This approach 
involves deploying a DL model, fne-tuned on a large dataset of SME ratings, to 
work concurrently with trainees as they practice rating textual responses. The prem-
ise is that when a signifcant discrepancy arises between the trainee’s ratings and 
those predicted by the DL model, the trainee’s evaluations are fagged for review. 
This fagging mechanism serves a dual purpose: it offers immediate feedback to 
trainees, drawing their attention to potential inaccuracies or biases in their assess-
ments, and it assists in aligning the trainee’s judgment with the expert judgments 
inherent in the training dataset. Developing such a system, however, is a complex 
task that entails several critical steps. First, it requires the acquisition of a high-
quality, diverse dataset for fne-tuning a pre-existing, pre-trained DL model (e.g., 
BERT and RoBERTa). The process may also involve comparing various pre-trained 
models to identify the most effective one for this specifc application. Following the 
selection and fne-tuning of the model, the next challenge is integrating it into an 
interactive platform. This platform should not only facilitate real-time feedback but 
also be user-friendly, enabling trainees to easily interpret and apply the feedback. 
Despite the signifcant engineering and data science challenges involved in creating 
such a system, the potential to offer real-time feedback and enhance rater calibration 
is apparent. 

Bias Detection 
Following the development of a rating calibration model and platform, another 
proposed strategy to enhance rater training is the development of a bias detection 
mechanism. This approach seeks to address a persistent limitation in traditional 
rater training methodologies, the detection and mitigation of biases in ratings. 
Central to this approach is the training of an AI model specifcally designed to 
fag textual responses based on their susceptibility to elicit biased ratings from rat-
ers. The proposed bias susceptibility model operates by evaluating each response 
for specifc words or phrases that are known to potentially trigger biased evalu-
ations. The model assigns a susceptibility score to each response, refecting the 
likelihood that a typical rater might respond with bias when evaluating it. This 
score serves as an indicator of how prone the response is to biased interpretation 
or judgment. 
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The functionality of the bias susceptibility model could be linked to the rating 
calibration model. When a trainee’s rating signifcantly deviates from the prediction 
made by the calibration model, the bias susceptibility model provides an additional 
layer of feedback. It does so by analyzing the rated text and indicating if the content 
of the response itself might have predisposed the trainee to a biased rating. This dual-
feedback mechanism—calibration deviation and bias susceptibility scoring—enables 
trainees to not only understand where their ratings diverge from expert patterns but 
also recognize and refect on potential biases in their judgment process. 

For effective implementation, the bias susceptibility model would require train-
ing and fne-tuning on a comprehensive dataset, ideally encompassing a wide array 
of responses that have been previously evaluated by SMEs for bias susceptibility. 
Through this training, the model learns to identify patterns and linguistic markers 
that are indicative of responses with a high potential for biased ratings. The goal is to 
ensure that trainees receive insightful, data-driven feedback that aids them in devel-
oping a more objective and balanced approach to their evaluations. Integrating the 
bias susceptibility model into the rater training process presents a method to enhance 
the accuracy and fairness of rater judgments. It not only aligns trainee evaluations 
with expert standards but also sensitizes them to the nuances of bias, fostering a 
more refective and conscientious approach to rating. 

Personalized Feedback 
The fnal proposed strategy to enhance rater training through AI is the implementa-
tion of a feedback chatbot. This chatbot could be designed to provide interactive and 
contextually relevant feedback to trainees. The chatbot could operate by analyzing 
the trainee’s deviations from the calibration model’s predictions, the susceptibility 
scores from the bias detection model, the content of the textual responses being 
rated, and rating scales. It could synthesize this information to offer customized 
feedback. The primary goal is to foster a deeper understanding among trainees 
regarding the divergence of their ratings from the DL model’s predictions, high-
lighting potential biases in their judgment. This tailored feedback is enhanced by 
the chatbot’s ability for question-answering, creating an opportunity for refective 
learning and development. 

To implement such a chatbot, a generative AI model based on architectures like 
GPT could be employed to generate coherent, context-aware responses (Bommasani 
et al., 2022). This makes it particularly suited for engaging with trainees in a mean-
ingful and educational manner. The chatbot could interact with trainees to clarify 
why their ratings deviated from model predictions, offering insights into potential 
biases. It could also answer related queries, thereby encouraging trainees to intro-
spect and refne their evaluative processes. Integrating the chatbot with other strate-
gies allows it to utilize outputs from both the rating calibration and bias detection 
models, ensuring a comprehensive feedback mechanism. 

Implementing such an AI-driven chatbot in a real-world training environment 
requires meticulous design and resources, aligning with specifc training needs and 
objectives. This system could have the potential to transform rater training, making it 
more interactive, insightful, and effective in honing the skills and judgment of train-
ees. While the development of this system is complex, it aligns with the emerging 
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potential of AI to provide a highly personalized, effcient system for developing 
expertise through hands-on practice, timely feedback, and knowledge augmentation 
(Mollick & Mollick, 2023). 

This section has explored the integration of AI in SME ratings and rater training, 
underscoring its emerging role in both reproducing and augmenting rater evalua-
tions. AI is increasingly being utilized to produce ratings closely aligned with those 
of human SMEs, offering accuracy and effciency in tasks such as analyzing candi-
dates’ natural language responses during interviews. These advancements in AI are 
making signifcant strides in organizational sciences and HR processes. However, 
while AI’s role in augmenting SME ratings is substantial, it does not entirely replace 
the nuanced judgment of human experts. As AI technologies continue to advance, 
they will likely play an increasing role in training programs, offering new avenues 
to improve human skills. For organizations, this progression signifes a shift toward 
utilizing AI to improve effciency while also preserving essential human insights. 
Looking ahead, the future of SME ratings and rater training lies in effectively com-
bining AI’s analytical capabilities with human expertise, aiming to achieve a more 
effective, accurate, and balanced assessment process. 

DEVELOPING AND TRAINING AI MODELS 
TO REPRODUCE SME RATINGS 

Developing and training AI models to reproduce SME ratings has a similar set of 
best practices as outlined above when building AI models to train raters. One of 
the most notable differences is that models built for replacing or augmenting SME 
ratings need to be even more accurate than those used to train raters as the cost of 
mistakes can be higher as discussed by the research described above. 

STEPS TO DEVELOPING AND TRAINING A MODEL 

The frst, and arguably most important, step is collecting data to train your AI model. 
Any model designed to replicate human ratings can only be as effective as the data 
that is used to build the model. Best practices include ensuring your raters are well 
calibrated with one another and working from a shared mental model, ensuring that 
you have a diverse set of raters and/or that you are obscuring demographic informa-
tion when presenting responses to be rated, and ensuring that you have response 
in your training data representing the full range of possible responses (e.g., if your 
model is being trained to provide ratings on a 1–5 scale, ensuring you have both 1’s 
and 5’s represented in your training data). 

The frst step to ensuring that the raters who will be rating your training data have 
a shared mental model is having a theoretically sound defnition for the underlying 
construct that is being rated. For example, if raters are being asked to rate open-
ended interview responses on conscientiousness, it is important to have a defnition 
of conscientiousness to share with the raters along with a behaviorally anchored 
rating scale to assist raters in providing their ratings. It is also important to ensure 
that raters are calibrated with one another and have a shared mental model. This is 
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where the traditional rater training strategies shared earlier in this chapter like FOR 
training (Bernardin & Buckley, 1981) can be used to help train raters at the start of 
a new project. It can also be helpful to conduct training sessions where raters all rate 
the same sample responses and come to a consensus on what the correct response 
should be (Koenig et al., 2023; Thompson et al., 2023). 

Another critical decision point in building an AI model to replicate SME ratings 
is selecting the AI model that you intend to use. There are a number of models avail-
able, although there are a few that tend to be used more frequently for this purpose 
and new models are constantly being developed. Thompson et al. (2023) explored 
three of the most common model architectures, in order from oldest to newest, BoW, 
LSTM models, RoBERTa. The model that is right for a particular use case may vary, 
but in general newer models outperform older models as demonstrated by Thompson 
and colleagues. There may be future applications for the large language models that 
underlie generative AI here as well. A general best practice is to compare two or 
more appropriate models to determine which one is the best ft for your use case. 

Once a model has been selected, the actual modeling work can begin. Although a 
deep dive on this topic is outside the scope of this chapter, at a high level, this involves 
actually training and fne tuning the model to predict the labeled SME ratings. There 
are a number of metrics that can be considered during this process. Many are more 
engineering and data science based, but more familiar metrics for psychologists such 
as correlations can be produced and examined as well. When building these models 
it is important to also consider other forms of reliability and validity like convergent 
and divergent validity and whether or not the model will produce the same score 
every time on the same input data (Campion et al., 2016; Speer et al., 2022). 

Finally, once a model has been built and thoroughly tested, it can be deployed 
into the real world. This process will likely require collaborating with engineers and 
data scientists if they have not already been involved in the process to date. It is also 
important to ensure that any deployed models are being monitored on an ongoing 
basis to ensure that there is not model drift or any unexpected behaviors once these 
models are operating on real-world data rather than training data. 

Considerations 
There are a number of considerations that should be taken into account when build-
ing an AI model to replicate human raters. These can generally be categorized as 
ethical considerations, transparency and explainability, and human-AI collabora-
tion. All of these considerations can be addressed by conducting either an internal 
or external AI audit to better understand how the AI tool is working (Landers & 
Behrend, 2022). 

The most important set of considerations are ethical and legal considerations. 
Many ratings tasks that use human raters today have high stakes implications such 
as whether someone gets hired, promoted, loses a job, or passes a training exercise. 
Among the many ethical considerations that exist, the biggest is fairness. An AI 
tool that is built to replace or augment human raters will essentially scale the rat-
ings that were used for training. If there is any intentional or unintentional bias in 
those ratings, it will be present in the AI tool as well. It’s important to evaluate both 
your training data and your fnal model for bias or adverse impact to ensure that 
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the algorithm being implemented is fair to everyone who is being evaluated. There 
are a number of ways to examine this ranging from traditional I-O methods such as 
the 4/5th rule to newer techniques like multi-penalty optimization (Rottman et al., 
2023). Fairness is also important from a legal perspective as there are a number of 
laws that might apply depending on the use case of the AI rating tool and the juris-
diction in which the tool is being used. 

It’s also important from both an ethics and transparency perspective to ensure 
that the models used are as transparent and explainable as possible. Typically sim-
pler models such as linear regression or BoW will be more explainable because 
they are less mathematically complicated and it is easy to see how inputs such 
as individual words are being weighted by the model. However, simple models 
do not always result in the best validity, meaning that often the models that are 
best equipped for the complex task of replicating human ratings are not the most 
explainable out of the box. There are a number of ways to address model explain-
ability. Felzmann and colleagues (2020) propose a new transparent concept and 
offer a set of nine principles for designing transparent AI systems that will be 
discussed hereafter. Additionally, there is a subfeld of ML known as explainable 
artifcial intelligence (xAI) that includes techniques such as Local Interpretable 
Model-Agnostic Explanations (LIME) that can be used to open the black box of 
these models (Dieber & Kirrane, 2020). 

The fnal consideration is human-AI collaboration. It is important to ensure that 
humans are guiding the AI development every step of the way from ensuring the 
raters preparing the training data are working from a shared mental model and are 
rating psychometrically sound concepts to the decisions that the human training 
the model is making when selecting a model and doing the actual training work. 
By having humans who are knowledgeable about the task that AI is being asked to 
replicate and who are knowledgeable about the necessary safeguards and compli-
ance concerns in the loop, you can ensure that your AI rating tool is functioning 
as expected. 

RECOMMENDATIONS 

When implementing AI in the context of SME ratings, there are a number of best 
practices that should be kept in mind. First and foremost, the introduction of AI does 
not negate the need to still follow all of the best practices of our feld. It is still imper-
ative to ensure that training best practices as outlined in this chapter and elsewhere 
are followed and that the tool has validity, reliability, and is free of adverse impact. It 
can often be easy to get caught up in the technical details of building and deploying 
AI, but the best practices and ethical guidelines of psychology do not change just 
because AI has been added to one’s toolbox. 

It’s also important to work closely with data scientists and engineers when 
building models (Landers, 2023). This serves a couple of purposes. By working 
with technical experts early in the process, it makes deploying and production-
izing models easier down the line when the engineers have been involved from 
the beginning and have had the opportunity to give input where appropriate. It 
can also help ensure that the psychologists and the engineers who need to work 
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together have a common language and that the psychologists have a seat at the 
table in the future when decisions are being made about technology and AI that 
impact our feld and day-to-day work. 

STAKEHOLDER PERCEPTIONS AND AI ADOPTION 

Beyond addressing the critical practical and ethical considerations in developing AI 
models, it is equally important to engage in discussions concerning stakeholder per-
ceptions, such as trust, as they can have a meaningful impact on the adoption and 
utilization of AI. Considering the end-user experience becomes pivotal in fostering 
trust and enhancing AI adoption and usage. In the context of relying on AI-produced 
ratings, individuals may feel uncertain about the ability of AI in producing accurate 
assessments compared to human judgment. Moreover, there may be a lack of under-
standing among individuals regarding the underlying objectives of AI in generating 
ratings, particularly its role in achieving fair and unbiased evaluation outcomes (Van 
Esch et al., 2019). 

Starke et al. (2022) conducted a review of 58 studies and highlighted context-
dependence of fairness perceptions. They emphasize the need for coherent the-
oretical frameworks and advocate for the development of reliable measures of 
perceived algorithmic fairness and exploration of its consequences. While applica-
tions of AI in organizations may be considered relatively nascent and ever chang-
ing, several research works began to offer theoretical frameworks and principles to 
understand and improve attitudes, perceptions, and behavioral outcomes of second 
and third parties toward automated and augmented decision-making (Felzmann 
et al., 2020; Langer & Landers, 2021; Mahmud et al., 2022). When seeking to fos-
ter adoption and positive reactions toward the implementation of AI in organiza-
tions, it is advisable to rely on the theoretical frameworks and principles emerging 
from research. 

For example, “Transparency by Design” (TbD) is a set of principles offered by 
Felzmann et al. (2020) for automated decision-making that balances the benefts 
and challenges of transparency. The authors highlight the complexity of trans-
parency, with tensions between theoretical ideals and practical implementation. 
They propose nine principles for designing transparent AI systems, which include 
considerations of relevant technical, informational, and stakeholder factors. TbD 
serves as a bridge between high-level AI ethics and their practical implementa-
tions, drawing inspiration from “Privacy by Design.” This framework empha-
sizes the importance of balancing the desired level of transparency with what can 
actually be achieved, as excessive transparency can have adverse effects (Langer 
et al., 2018, 2021a). To implement TbD effectively, wider responsible design prin-
ciples and stakeholder perspectives should be taken into account. Decision-makers 
should also seek to mitigate potential barriers to TbD implementation, such as 
misalignment with organizational incentives, and adopt regulatory measures to 
address these challenges. 

Langer and Landers (2021) explore how various factors infuence the attitudes, 
perceptions, and behavioral outcomes of second and third parties toward auto-
mated and augmented decision-making. The authors identify distinct reactions 
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between decision augmentation, where there is human oversight, and full decision 
automation, where decisions are made solely by the AI system. System design 
choices, such as transparency, signifcantly affect perceptions but remain under 
researched. Factors affecting reactions to decision automation and augmentation 
are categorized into characteristics of the decision-making process, system char-
acteristics, characteristics of second and third parties, task characteristics, and 
output and outcome characteristics. These factors include preferences for human 
control in high-stakes decisions, shifting preferences toward the system as its 
accuracy improves, the infuence of experience, education, personality traits, and 
gender, the nature of the task, and the impact of system outputs on perceptions. 
Understanding these factors is key to building stakeholder trust in AI as a deci-
sion aid. 

An ongoing evaluation of the empirical literature in this space is similarly impor-
tant. Several empirical studies have contributed to our understanding of building 
stakeholder trust in AI as a decision aid. For example, a study by Solans et al. (2022) 
investigated the impact of accuracy and bias in a Decision Support System (DSS) on 
human performance and reliance. The results show that participants perform bet-
ter when following the advice of the DSS, and the increase in score is related to 
both game diffculty and DSS accuracy. Participants exhibit rational behavior by 
adjusting their reliance on the DSS based on its accuracy. Interestingly, participants 
expressed moderate acceptance of the DSS in the exit survey, even when it exhibited 
low accuracy. These fndings suggest that users may have diffculty detecting the 
quality of recommendations or predictions, highlighting the importance of consider-
ing user perception when deploying a DSS. 

In another study by Langer et al. (2021b), the impact of Automated Decision 
Support Systems (ADSS) on managerial personnel selection tasks is explored. Three 
participant groups were studied, with one group receiving automated ranking of 
applicants before processing, another after processing, and a third group without any 
ranking. Satisfaction was higher for the support-after-processing group, and there 
was a notable increase in self-effcacy. However, no signifcant effciency benefts 
were observed, possibly due to the simplicity of the tasks and participants’ desire to 
verify the ADSS’s recommendations. Psychological reactions varied based on when 
the support was provided, with those receiving support after processing reporting 
greater satisfaction and self-effcacy. 

Taken together, it becomes clear that understanding and valuing stakeholder 
perceptions are foundational pillars for fostering adoption and trust in AI-powered 
tools. The journey toward successful AI implementation extends beyond accurate 
model development; it requires ongoing efforts to manage adoption, stakeholder 
reactions, and appropriate use once a tool is rolled out. Continuous engagement with 
end-users, along with proactive measures to address concerns and adapt to evolving 
needs remain critical for sustained AI integration. 

Future Research 
With the explosion of AI research and new generative AI models like those coming 
out of OpenAI, there are numerous directions for future research that are changing 
on an almost daily basis. In this section, we outline some possible future directions 
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for research at the time of writing. There are likely future directions for research that 
will emerge as this area continues to rapidly evolve. 

The biggest new frontier in AI right now is generative AI (Bommasani et al., 
2022). With the creation of these new large language models, known as foundation 
models, AI now has capabilities beyond what anyone thought was possible even a 
few years ago. The most well known of these models is currently ChatGPT, the chat 
interface for OpenAI’s foundation models (GPT3.5 and GPT4 at the time of writing). 
The power of these models and the ease of access for anyone with a computer have 
opened up new avenues for research, as well as risks if these models are being used 
incorrectly. For example, if a human rater tried to save time by secretly having one of 
these generative AI models do their ratings for them without any proper documenta-
tion or oversight this could lead to problems with the ratings if not done correctly 
and concerns about data security. However, these models could be used to help train 
raters by providing a realistic chat interface for training, and there are potentially 
opportunities to use these models to label data or generate BARs in a research con-
text as well to see how well they compare to human SMEs. 

Additionally, increased model explainability is an important potential area for 
future research. The feld of xAI, as described previously in this chapter, is continu-
ing to grow and is becoming more crucial as models become more complex and 
harder for humans to interpret. Ensuring that AI models that are being used to repli-
cate human raters are as transparent and explainable as possible will go a long way 
toward helping to open the black box of these newer models and ensuring that they 
are working as intended. 

Another possible direction for future research is exploring the viability of unstruc-
tured adaptive assessments. These could be assessments where instead of having to 
take a traditional closed ended assessment with multiple choice questions or having 
a high touch assessment center with multiple raters, the person being assessed could 
talk to a generative AI chatbot who asks questions as needed to gather data about 
relevant constructs and can probe for additional information until enough informa-
tion has been gathered to generate a score. This type of technology is likely a long 
way off from being deployed, but it does present some interesting opportunities for 
research to explore if it is even possible and how it compares in terms of validity, 
reliability, time, and applicant reactions to traditional assessment methods. 

CONCLUSION 

In conclusion, the evaluation of human behavior and performance stands as a corner-
stone within organizational processes, shaping critical functions like performance 
appraisal, assessment, and personnel selection. Human ratings, long relied upon for 
such evaluations, are not without their limitations, as they are susceptible to various 
biases and errors despite efforts to enhance validity and reliability through traditional 
rater training methods. However, the landscape is evolving with the integration of 
AI-powered tools and ML technologies. The integration of AI and ML presents a 
transformative opportunity to augment human judgment in assessing behavior and 
performance. By replicating expert judgment with remarkable accuracy and reliabil-
ity, AI has the potential to streamline evaluation processes, reduce bias, and enhance 
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validity and reliability. Through real-time decision aids and personalized feedback 
mechanisms, AI offers novel avenues for improving the effciency and effectiveness 
of human rating systems. 

This chapter has provided a comprehensive evaluation of traditional rater training 
methods and demonstrates the potential of AI to revolutionize evaluation practices. It 
has underscored the importance of research-informed approaches in AI model devel-
opment and emphasized the need to address stakeholder perceptions and ethical con-
siderations surrounding AI implementation. As organizations embark on the journey 
of integrating AI into their evaluation processes, it is imperative for researchers and 
practitioners alike to collaborate in developing robust AI models, navigating practi-
cal and ethical concerns, and relying upon research-driven principles and frame-
works to guide this work. By embracing AI as a tool for enhancing human judgment 
rather than replacing it, organizations can harness its transformative potential to 
drive excellence in evaluation practices and ultimately, organizational success. 
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INTRODUCTION 

Almost 25 years ago, Nature published an editorial note claiming that no original 
research had been published in decades because “metahumans”, extremely advanced 
artifcial intelligence (AI) agents, were conducting research so cutting-edge, so 
quickly that the only role left for humans was to try decoding and sharing the work 
of the AI (Chiang, 2000). This, of course, was not entirely true. It was a fctional 
piece by science fction writer Ted Chiang, who often writes about how small tech-
nological advancements can dramatically change our lived experiences. Although 
this has been the only sci-f ever published in Nature, much more recently Nature, 
Science, and thousands of other scientifc journals updated their policies in very 
real editorial notes to prevent a new form of AI, Large Language Models (LLMs), 
from being published with credited authorship on research papers (Nature Editorial 
Board, 2023; Thorp, 2023). Today, we are at a pivotal moment where LLMs are not 
only tools for research but are quickly becoming integrated into the world of work, 
prompting us to consider the boundaries between artifcial and human experiences 
at work (Woo et al., 2024). 

The sudden emergence of LLMs as a category of generative AI models has 
quickly brought us closer to a reality where state-of-the-art (SOTA) models are 
able to productively contribute to our work. Although the deep learning architec-
ture underlying generative AI is eight years old, it was less than two years ago 
that ChatGPT arrived and exploded in popularity. This popularity, perhaps due to 
design decisions around an accessible and intuitive chatbot-style interface, acceler-
ated excitement and investment in generative AI models at an unprecedented rate. 
There were estimates that LLMs are poised to impact 80% of the workforce and 
40% of total working hours (Eloundou et al., 2024) and add millions, billions, even 
trillions in global economic value (Goldman Sachs, 2023). In line with these grand 
expectations, LLMs are able to draft legal documents and interpret medical imag-
ing with surprising accuracy, write and debug sophisticated computer code in mul-
tiple programming languages, and analyze massive amounts of unstructured data to 
provide actionable business insights in minutes (Guo et al., 2024). 
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Within this wave of enthusiasm and grand predictions, however, a more nuanced 
picture is emerging. There are mixed feelings about the role of AI at work. Alongside 
the hype there is apprehension, skepticism, and even aversion to the “dark side” of 
AI at work. These mixed feelings stem from concerns over potential bias in and 
ethical implications of AI decision-making, job displacement, and the alienation 
of the human worker from their work (Bankins & Formosa, 2023; Mikalef et al., 
2022). The reality is much more tempered, however, with AI and LLMs serving as 
powerful augmentation tools rather than wholesale replacements for human work-
ers. These tools are most effective when strategically deployed to enhance human 
capabilities and streamline the tasks that people don’t want to do—LLMs can’t be 
that bad if they are cleaning messy data sheets. As we move along Gartner’s Hype 
Cycle, past the initial infated expectations for ChatGPT, we’re developing realistic 
expectations of LLM capabilities and gaining a clearer understanding of how they 
can be integrated into organizational processes and individual workfows. There is 
new empirical work, for example, indicating that these models can improve real-
world call center productivity by 14–34%, boost consultant performance by 40%, 
and enhance skill development by 18–49% (Brynjolfsson et al., 2023, Dell’Acqua 
et al., 2023; Wiles et al., 2024). The purpose of this chapter is to review and consider 
how advancements in AI can be used to improve the experience of employees across 
their time at an organization—the so-called “bright side” of AI at work. 

BUT WHAT EXACTLY IS GENERATIVE AI? 

It’s fun and exciting to talk about AI, waxing poetic on the future of work, but what 
exactly is AI? Generative AI? A foundation model? A SOTA LLM? AI is a term 
broadly referring to any system designed to perform tasks typically requiring human 
intelligence (McCarthy et al., 1955). Human intelligence, as of recently, was thought 
to be uniquely human and uniquely applicable to work requiring the hallmark traits 
of humanity: creativity, critical thinking, and dynamic problem-solving—different 
from much of the repetitive work left on the assembly lines and factory foors after 
machine-based manufacturing and automation of the early 19th- and 20th-century 
industrial and scientifc management revolutions. 

Around the same time, the pioneers of AI were pushing the frontier of comput-
ing forward. In the 1820s, Charles Babbage built the frst steam-based, mechani-
cal calculator and in 1843 Ada Lovelace wrote the frst computer program (a “For 
Loop”) for Babbage’s Analytical Engine. In doing so, Ada Lovelace also uncovered 
the concept of a “universal machine” which approximates today’s general-purpose 
computers. In 1956, the Dartmouth AI Conference marked the start of our modern 
understanding of AI and the advent of expert systems, programmed to respond to 
user questions and natural language processors translating languages (sound famil-
iar?). But in the 1980s, there was a decline in interest and investment around AI, 
because of increasing mistakes and rising costs due to rigid algorithms and limited 
memory and computational power, all leading to an AI winter. AI research was so 
cold during this time that scientists doing AI research reportedly came up with other 
names for their work. In 2017, a major technological breakthrough with Attention 
Mechanisms and Transformers (Vaswani et al., 2017) marked the start of an AI 
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spring. Interest, investment, and research warmed up again and the combination 
of online data availability, modern computational hardware infrastructure, and 
Transformer architectures allowed for the scale needed for the emergence of today’s 
generative AI systems. 

Generative AI broadly refers to a type of AI that is able to learn patterns in mas-
sive amounts of raw unstructured data and then generate new outputs based on those 
learned statistical patterns. Generative AI can work with text, images, and audio, 
making it signifcantly more versatile and capable of handling unstructured data 
compared to traditional machine learning (ML) techniques requiring structured, 
labeled data. Part of the magic of generative AI lies in the use of embeddings and 
latent space. Embeddings are numerical representations capturing the associations 
and structures characterizing training data. By projecting data features to latent 
space, similar to how personality traits are abstracted to latent space, generative AI 
can uncover complex patterns in unstructured data and manipulate them to generate 
new, relevant outputs. Many generative AI use cases can beneft from both the gen-
erative outputs of these models but also from working directly with the embedding 
space. 

Generative AI is typically built on foundation models. Foundation models gener-
ally refer to general-purpose AI systems that are designed to be able to effectively 
generate a wide variety of outputs for a range of different tasks out of the box, but 
that can be adapted to more specifc tasks (i.e., they are foundational; Bommasani 
et al., 2021). Note that not all generative AI models are foundation models. Where 
foundation models are large and broad, there are also narrow AI models that are 
designed for a specifc purpose, like translation, image recognition, or scoring per-
sonality from asynchronous video interviews (AVIs). 

LLMs are popular examples of foundation models, as they are language-based 
general-purpose systems, deep learning models, that are trained on massive 
amounts of text data. By learning complex patterns in this data, these models 
are able to create statistically probable models of the associations between the 
words, semantics, and linguistic structures of text and use this contextual under-
standing to generate coherent, novel text (Brown et al., 2020). Although LLMs 
exemplify foundation models, many LLMs are also characterized by their chatbot-
style interface and unique training to be helpful, honest, and harmless assistants 
that end up distinguishing them from basic foundation models. Reinforcement 
Learning from Human Feedback (RLHF; Christiano et al., 2017) is an important 
supervised training technique that tunes these models to respond to questions 
and instructions and align their outputs with human values and preferences. For 
example, ChatGPT is an RLHF-tuned LLM built on top of the GPT-3.5 and 4 
foundation models. This structure also allows for specifc ways of interacting 
with LLMs, such as prompting, which involves crafting natural language inputs 
to guide the model’s reasoning and outputs. Advanced techniques like in-context 
learning (ICL) and chain-of-thought (CoT) prompting allow users to teach the 
models by example and improve their ability to understand and respond to com-
plex tasks. 

SOTA models are generative AI models that are at the frontier of AI capabili-
ties. Although SOTA models are often extremely large, making them diffcult and 
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expensive to run locally, featuring some of the most advanced LLM capabilities, 
including multimodal (i.e., text and image), multilingual, math, coding, reasoning 
and even function calling and tool use capabilities. Some examples of SOTA models 
include OpenAI’s GPT-4o, Anthropic’s Claude 3.7 Sonnet, Meta’s Llama 4 herd, 
Google’s Gemini 2.5, DeepSeek v3 etc.—many of which are already household 
names. 

These latter few SOTA capabilities have unlocked agentic LLM capabilities, 
where LLM agents are able to consider a problem, remember and prioritize tasks, 
and use tools (i.e., internet search, execute Python code, and manipulate data sheets) 
to achieve goals (e.g., AutoGPT and BabyAGI). SOTA and agentic models are at the 
cutting-edge of AI and there are new developments and breakthroughs happening 
that are rapidly changing the generative AI landscape. These descriptions, along 
with most of the content in this chapter, should be considered as a snapshot in time 
and subject to change. 

But for now, SOTA and generative AI models are simply tools that people and 
organizations can use to improve their productivity and experience at work. Imagine 
that you had an intern on their frst day of work, who can read every article written 
on your favorite theory, memorize every Fortune 500 employee handbook, and ana-
lyze thousands of pulse survey results—all before their morning coffee. This is the 
sort of capability (and frst-day-at-work naivete) that generative AI models have— 
with 10,000 H100 GPUs, 175 billion parameters, and 10^26 FLOPs instead of coffee. 
Like a good intern, a LLM assistant (RLHF’d LLMs, i.e., ChatGPT, Claude, and 
Gemini) wants to be helpful, but may be overeager and run off in the wrong direc-
tion. You, the reader and new manager of a LLM-based intern, need to be patient, tell 
them what you want in a way the model understands, and guide them with examples 
when they are wrong. If a model is consistently off, you might be using the wrong 
prompt, wrong model, or wrong AI solution for your use case (try XGBoost). 

CHAPTER OVERVIEW 

In this context, the purpose of this chapter is to review and consider how advance-
ments in AI can be used to improve the experience of employees across their time 
at an organization—the so-called “bright side” of AI at work. This chapter is going 
to focus on how AI is impacting the employee experience at work. We are going 
to consider how current advancements in AI being used across the employee life-
cycle today, at the time of writing, and how frontier models may be used in the 
employee lifecycles of the future. The employee lifecycle roughly consists of the 
different stages an employee experiences across their time with an organization, 
from initial contact (i.e., organizational reputation and attraction) to departure (i.e., 
offboarding, exit, and advocacy), providing a structured framework for understand-
ing how employees interact with organizations and how their psychological needs 
and experiences evolve over time (Beer et al., 1984). Here, for simplicity’s sake, 
we adopt a fve-stage lifecycle model, which includes (1) recruitment and selection, 
(2) employee onboarding and training, (3) performance management and appraisal, 
(4) social dynamics at work, and (5) organizational departure. The chapter is orga-
nized following this simplifed framework. 
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Our overarching goal in writing this, as noted above, is to highlight some of the 
“bright side” of AI at work, review current applications and use cases, and to gen-
erate some excitement around future applications and use cases of AI at work. As 
organizational psychologists, this is an exciting time to be experimenting with genera-
tive AI in the workplace because these models have capabilities that allow for people 
analytics on steroids, personalization at scale, augmented human decision-making, 
adaptive interventions, and the automation of complex, creative yet routine tasks. Along 
with these opportunities there are a number of new research areas and also risks 
and ethical considerations to consider, including bias and fairness, privacy and 
data governance, transparency and explainability. This area moves so quickly that 
research and ethical guidelines often trail these technological advancements, creat-
ing a dynamic environment where scientist-practitioners must be agile. However, 
the human touch and perspective also remains important in this setting. As most 
people spend most of their waking lives at work; we as scientist-practitioners should 
be interested in understanding, developing, and ensuring that new technologies are 
human-centered and improving the experience of work for everyone. 

RECRUITMENT AND SELECTION 

INFORMED RECRUITMENT AND SELECTION 

Job and work analysis is a foundational process informing a wide variety of HRM 
functions across the employee lifecycle, including recruiting, selection, performance 
management, and more (Sackett et al., 2023). As organizations try to attract and 
identify the right people, job analysis provides a systematic method for identifying 
the essential tasks, responsibilities, and qualifcations required to effectively com-
plete essential job tasks. The process broadly involves collecting detailed informa-
tion about job tasks, work environments, and necessary knowledge, skills, abilities, 
and other characteristics (KSAOs) through methods such as interviews, observa-
tions, and questionnaires (Primoff, 1975), typically stemming from subject matter 
expert (SME) judgment. Job analysis is important as it ensures that HRM functions 
are relevant, comprehensive, and legally defensible. However, job analysis is also 
challenging, as maintaining up-to-date ratings in a constantly evolving work land-
scape can be burdensome and resource intensive (Bobko et al., 2008). 

To help overcome some of these challenges, scientist-practitioners have started 
experimenting with language modeling to streamline the job analysis process. For 
example, Putka et al. (2023) used NLP to predict SME KSAO ratings from the lan-
guage used in the associated job descriptions and task statements, fnding evidence 
for both the validity of this approach and establishing the feasibility of language 
modeling in this process. Building on this work, LLMs are now being experi-
mented with to automate the job analysis process by collecting data as a chatbot 
asynchronously interviewing job incumbents or helping to scrape and structure raw 
job details available online, identifying and mapping core tasks and competencies, 
and roleplaying as SMEs by creating importance ratings. Job and work analysis can 
be complex yet essential for subsequent HRM initiatives so a rigorous approach is 
necessary (Tippins et al., 2021). Breaking down the process into its modular parts 
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(i.e., structuring data, extracting tasks and competencies, rating and mapping) and 
evaluating the LLMs performance on each (i.e., multistep and CoT) before stream-
lining the entire process is recommended. 

RECRUITMENT 

Once the key characteristics of the work and the right person to do the work 
have been identifed, organizations can start attracting and recruiting new talent. 
Recruitment, as an area of people science, has an image problem, where it is often 
viewed as an “old” and “traditional” feld without much innovation (Lievens & 
Chapman, 2019). As recently as the early 2000s, people were still being recruited 
through job boards, newspaper postings, or word of mouth. As organizations strive 
to attract and retain top talent in an increasingly competitive landscape, LLMs 
appear to be revitalizing the feld of recruitment by becoming capable partners 
in the recruiting process. This shift toward AI-enabled recruitment promises to 
streamline hiring procedures, reduce unconscious bias, and improve the overall 
candidate experience (Black & van Esch, 2020). But the increasing integration of 
generative AI in the recruiting process also raises important ethical considerations 
and challenges. As the goal of recruitment is to build and maintain high-quality 
talent pipelines and pools (Breaugh, 2013), ensuring that generative AI is inte-
grated properly is quickly becoming an organizational imperative. Organizations 
often fnd themselves with an overwhelming number of job applicants for their 
HR team to sort through. And applicants often fnd themselves navigating through 
impersonal online application systems. However, LLMs provide an opportunity to 
potentially resolve both of these issues. Toward this, surveys suggest that 88% of 
companies in America are already using AI to enhance their recruiting processes 
(Laurano, 2021) and we expect this number to quickly increase in the coming years 
with generative AI. 

There are several ways that generative AI is being used today for outreach, 
screening, and engagement in recruiting. First, LLMs automate talent outreach 
efforts, changing the ways organizations reach out to potential candidates and opti-
mize their job postings. LLMs can create tailored job descriptions based on data-
bases of updating role requirements, company culture descriptions, and tracked 
industry trends. Simultaneously, LLMs can also analyze successful job postings 
and recommend improvements in language, structure, and SEO to increase visibil-
ity in attracting top talent. Second, generative models are being used to streamline 
the applicant screening process. LLMs can quickly scan large volumes of resumes, 
with intelligent resume parsing, identifying key qualifications and experiences to 
bring qualified applicants to a human decision-maker’s attention. This builds on 
traditional resume parsing technologies because LLMs have a greater understand-
ing of natural language and can potentially infer potential skills and experiences 
not explicitly listed, due to their attention to context. For example, Hilton Hotels & 
Resorts implemented an AI-enabled screening system and time to hire dropped by 
88% (i.e., 42 to 5 days) and L’Oreal, after implementing a similar system for resume 
review, reported a 90% decrease (i.e., 40 to 4 minutes) in time-to-screen-a-resume 
(Black & van Esch, 2020). Third, LLMs are improving talent engagement during 
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As a case study, for example, Unilever implemented an AI-powered gradu-
ate recruitment tool which has reportedly saved Unilever 100,000 hours of human 
recruitment time and approximately $1 million in annual recruitment costs globally. 
The company deployed a system that analyzes video interviews, assessing candi-
dates’ facial expressions, body language, and language use. The system is now used 
across Unilever’s entire graduate recruitment program, with claims of increased eth-
nic and gender diversity in the workforce. 

As organizations begin integrating LLMs into their hiring process, it’s impor-
tant to note that there has been a growing amount of research suggesting that 
people may have mixed reactions to AI in hiring, depending on several fac-
tors (see Bauer et al., 2024). This is important because the candidate experi-
ence during recruitment has been shown to signifcantly impact performance 
on pre-hiring tests, intentions to accept the job, and overall perceptions of the 
organization (McCarthy et al., 2017). Furthermore, the psychology underlying 
these acute reactions may also extend to the organization’s reputation. Research 
has suggested that both instrumental (e.g., pay and benefts) and symbolic attributes 
(e.g., innovativeness and prestige) infuence an organization’s attractiveness as 
an employer (Highhouse et al., 2009). The use of AI in recruitment, specifcally, 
could signal innovativeness and potential attract tech-savvy talent—but may 
also raise concerns around bias and fairness in human interaction. Mitigating 
negative perceptions around AI in recruitment follows many of the same recom-
mendations as selection more broadly, including being transparent about AI use, 
providing explanations about what the AI is doing, and keeping the human touch 
in the process. In terms of bias, LLMs may help limit bias in recruitment as 
LLMs can be used to mask personally identifying information in resumes before 
they are shown to human recruiters, potentially mitigating implicit hiring biases 
(Tippins et al., 2021). 

As we consider the future of recruiting, we may be entering an “arms race” 
between job applicants and recruiters, both leveraging SOTA models to gain an edge 
in the job market. On one side, recruiters are using AI to streamline and enhance 
their processes. On the other, applicants might use AI to optimize their applications, 
tailor their resumes, and even automatically apply for jobs that match their skills 
and interests. Looking ahead, we might expect several AI-driven changes to the 
world of recruitment: (i) automated talent pipeline building, where LLM agents play 
larger roles in identifying and proactively engaging potential candidates, including 
generating personalized outreach messages tailored to candidates’ backgrounds and 

the recruitment process, where LLM-powered chatbots are being used to main-
tain candidate engagement. These chatbots can provide 24/7 support, answering 
candidate questions immediately and potentially providing more natural, context-
aware conversations throughout this initial process to potentially improve candi-
date experience and reduce drop-off. As the recruiting process unfolds, chatbots 
can also provide personalized insights to help candidates make informed decisions 
about job opportunities. Overall, current applications of generative AI in recruit-
ing are meaningfully enhancing recruitment efficiency and accuracy on the orga-
nizational side and improving the candidate experience through personalization 
and responsiveness.
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potential organizational ft; (ii) predictive career pathing, where LLMs could help 
offer candidates insights into career trajectories within the company, enhancing the 
appeal of long-term employment; (iii) virtual reality job previews and recruitment 
event may become immersive experiences where LLMs provide candidates a more 
realistic preview of the work environment and company culture (as well as career 
pathing); and blockchain-verifed credentials, which sounds like a Ted Chiang story, 
but may become increasingly important for increasing trust in the application pro-
cess as LLM agents are able to autonomously navigate hiring systems on the behalf 
of the truly human job applicant. 

As organizations navigate the integration of AI into their recruitment processes, 
they must consider not only the effciency gains but also the impact on their reputa-
tion and attractiveness as employers. By thoughtfully implementing AI technolo-
gies, companies can potentially enhance their employer brand, attract tech-savvy 
talent, and demonstrate their commitment to innovation and fair hiring practices. 
However, they must also be mindful of maintaining a human touch and addressing 
candidate concerns about privacy and fairness to ensure a positive overall candidate 
experience. 

SELECTION 

Once applicants have been recruited and decided to apply for the job, there is a pool 
of talent that the organizational decision-makers need to consider and select the right 
applicant from. Selection, the process of evaluating and identifying the right person 
for the job (Ployhart et al., 2017), is likely the part of the employee lifecycle with the 
most amount of research and organizational investment in AI solutions. And this 
trend is likely to continue with generative AI and LLMs, as scientist-practitioners are 
rushing to experiment with these new technologies and integrate them into people 
science and HRM functions (Woo et al., 2024). Fortunately, many of the approaches 
and principles that have been established and refned since the advent of personnel 
selection in WWI and WWII (Schmidt & Hunter, 1998) are applicable and transfer-
able to the new era of generative AI. Traditional assessment focuses on assessing 
applicants for the KSAOs needed to succeed in the job, typically including abil-
ity, personality, and motivation (Sackett et al., 2023). In this area, although genera-
tive AI creates new opportunities for bigger data collection, streamlined measure 
development and refnement, and automated applicant scoring and recommendation, 
many of the typical KSAOs are still considered and standard validation practices for 
ensuring that selection systems are relevant, reliable, fair, and unbiased are still used 
(Landers & Behrend, 2023; Tippins et al., 2021). 

Today, there are a number of exciting applications of LLMs in modern selec-
tion processes, including scoring asynchronous video interviews (AVIs), assessment 
centers (ACs), situational judgment tests, (SJTs), gathering biodata, and integrating 
interactive chatbots into the selection process: 

AVIs are perhaps the current gold standard for AI-enabled selection, with surveys 
suggesting that over 85% of American companies are using some form of AVIs— 
and this number has likely only increased (Jaser et al., 2022). During AVIs, job 
candidates answer a series of standardized interview questions on camera and the 
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interview responses are analyzed to score KSAOs (Hickman, Bosch, et al., 2022). For 
example, HireVue, an industry leading provider of AVIs, reports 90% decreases in 
time to hire and 50% decreases in costs for interviewing. There is a growing amount 
of research supporting the quality of AVIs, suggesting that they are highly effective 
at capturing job-relevant behaviors (Hickman et al., 2024; Koutsoumpis et al., 2024; 
Liff et al., 2024). And with multimodal LLMs, or LLMs with image capabilities, 
there are efforts toward scoring non- or para-verbal behaviors along job-relevant 
criteria. At the same time, there are concerns around bias—particularly with using 
computer vision to score nonverbal behaviors (Harris et al., 2018). Employee experi-
ence is also a challenge for AVIs because, despite increased effciency on the hiring 
side, research suggests that applicants have some negative reactions to AVIs (Langer 
et al., 2019). Yet as AVIs become more commonplace and LLMs, text-to-speech 
(TTS), and speech-to-text (STT) capabilities continue to improve it seems likely that 
this will become a normal, seamless part of the hiring process. 

ACs refer to a suite of standardized assessments (not necessarily in a physical 
location) designed to simulate real-world job experiences, that may include inter-
views, psychological tests, behavioral simulations and other exercises (e.g., leader-
less discussions, in-basket or inbox activities), to observe, record, and evaluate key 
applicant KSAOs (Lievens et al., 2001). AC behaviors are often observed and then 
evaluated by multiple trained raters, which can quickly become expensive over many 
assessment activities and candidates. Fortunately, recent work has been exploring 
how AI can be used to extract and score behaviors from AC exercises. These efforts 
indicate that automating the scoring the verbal or text AC exercise responses with 
NLP and LLMs exhibits good psychometric properties and is comparable to the 
human scoring of ACs—with the addition of cost savings (Hickman et al., 2022). 

SJTs refer to assessment methods that present job-related situations and several 
possible responses. Candidates are typically required to either pick the best pos-
sible response for the situation or indicate how effective or desirable to the possible 
responses are (Lievens et al., 2008; Motowidlo et al., 1990).1 SJT development typi-
cally involves three key steps, including a job analysis (discussed above), identifca-
tion of scenarios and responses, and creating a scoring key. At the beginning of this 
process, generative AI may be used to help generate new SJT situations or response 
option pools by using a LLM to explore the situation space identifed in a job analy-
sis and/or generating variations of response options originally identifed by human 
experts. And narrow LLMs can be trained to facilitate scoring at the end of the pro-
cess. Although there is limited public research on the validity of AI-generated SJTs, 
there is some evidence that LLMs are effectively able to respond to SJTs (Harwood 
et al., 2024). 

Biodata refers to information about an applicant’s job-relevant life history and 
experience (see Speer et al., 2022). For example, “Did you ever build a model air-
plane that few” is a classic example of a biodata question for successfully select-
ing pilots in WWI and, similarly, asking a modern AI research scientist candidate 
whether they have ever built GPT-2 or written a CUDA kernel from scratch may be 
job relevant. LLMs have promising applications for biodata by potentially automat-
ing the identifcation, population of biodata inventories, and scoring from interview 
notes, transcriptions, or social media and trace data. 
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Finally, LLM-powered interactive chatbots are also being used to assess KSAOs. 
Chatbot assessment differs from AVIs as chatbots are dynamic, two-way interac-
tions (Zhou et al., 2019). These interactions are fairly complex behind-the-scenes, 
involving the understanding of applicant natural language, active but structured 
communication to dynamically power the conversation, and an assessment engine 
to extract relevant information and score it (Jayaratne & Jayatilleke, 2020). Recent 
research has found evidence for the validity of chatbot-based personality assessment 
(see Fan et al., 2023). For example, Sapia AI offers an interactive solution that cap-
tures resume information, biodata, personality, and SJT style information within a 
chatbot-style interface (Jayaratne & Jayatilleke, 2020). Again, as LLMs continue to 
improve in their capabilities these chatbot-based assessments will also continue to 
improve. 

Similar to traditional assessment, ensuring that the AI-powered selection tools are 
valid, reliable, and free from bias is essential. There are a several vectors where bias 
may be introduced in AI-powered selection processes. The typical process involves 
(i) using natural language processing, now with LLMs, to extract features from text, 
(ii) associating text features with observed scores from valid measures using super-
vised ML, and then (iii) predicting new scores from new text transcriptions. At the 
start of this process, a potentially overlooked issue is with bias in STT transcriptions, 
where transcriptions are often the raw material from AVIs, ACs, SJTs, etc., that is 
scored (Hickman et al., 2024). Toward the middle, there are concerns around innate 
bias in black-box models pretrained on WEIRD data and unreliable outputs, such as 
hallucinations. On the data side, there are the classic concerns around amplifying 
existing bias in historical data—“garbage in, garbage out” you’ve likely heard in 
your introductory stats course, which applies to posttraining too. Although halluci-
nations are becoming less of an issue with SOTA models, they are a necessary part 
of the probabilistic architecture underlying the magic of LLMs. Fortunately, many of 
the best practices for selection system development and validation are still applicable 
to LLM-based approaches (see SIOP, 2023). There are also advancements in meth-
ods for reducing subgroup differences (Campion et al., 2024; Zhang et al., 2023) and 
for explainability (i.e., XAI; Langer et al., 2021). For more on validation and bias in 
AI assessment, we refer readers to several great articles (Landers & Behrend, 2023; 
Langer et al., 2023; Tay et al., 2022; Tippins et al., 2021). 

EMPLOYEE ONBOARDING AND TRAINING 

Once selection procedures are fnalized, organizations will typically enroll new 
hires in several onboarding and training programs. These processes are intended 
to socialize the new employees; that is, provide them with the knowledge, skills, 
attitudes, and behaviors necessary to successfully enact their formal roles within an 
organization (Wanberg, 2012). Onboarding and training are paramount for organiza-
tional success, with research indicating that organizations that invest in such human 
capital management strategies deal with less turnover and report higher worker pro-
ductivity (Crook et al., 2011; Hirsch, 2017). Perhaps unsurprisingly, given the staff-
hours needed to execute these programs, AI is quickly becoming an integral part of 
onboarding and training in many organizations. 
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Beginning with the former, organizations have utilized AI to both personal-
ize and simplify the onboarding process. By training AI models on existing 
employee data, these technologies can provide new employees with the—often 
on-demand, 24/7—support (via chatbots) and institutional knowledge needed to 
quickly assimilate into the workforce. As a result of their accessibility, the use of 
such technologies often saves organizations time and money (Maheshwari, 2023). 
An applied example is illustrative; Automatic Data Processing (ADP), recently 
developed ADP Assist to assist with their human capital management practices 
(ADP, 2024). Relying on generative AI, machine learning techniques, and natu-
ral language processing methodologies, this software can quickly help employees 
fnd important documentation (e.g., tax forms and company policies), give them 
reminders about critical tasks (e.g., timesheets), and provide them with answers 
to job-relevant questions in seconds. From a managerial perspective, supervisors 
can also leverage ADP Assist to nudge employees toward desired behavior at key 
moments during the workday—based on that individual employee’s data, as well 
as data from those in similar roles. Importantly, as noted by Hancock et al. (2023), 
AI technologies such as ADP Assist should not replace existing HR systems, but 
rather be incorporated alongside existing efforts to support HR employees. 

From a training perspective, meanwhile, AI can also be used to support and 
supplement the interactions between trainers and trainees in the workplace. 
Importantly, like with onboarding processes, these systems should not replace 
human-to-human interaction; rather, they should be used in tandem with human 
efforts to acclimate employees to their roles (Ouyang & Jiao, 2021). One example 
of AI in the organizational training space is AI-powered learning management 
systems (LMSs). Akin to the recommendation algorithms in music streaming 
apps, AI-powered LMSs can tailor the training experience for each individual 
employee—adjusting the learning experience to meet a focal employee’s prefer-
ences and needs (Davey, 2024). For example, if a new employee is struggling 
with specifc material, an AI-powered LMS can draw from existing employee 
data in tandem with the new employee’s prior activity to recommend remedial 
training material that can meet them where they are. Immersive, virtual real-
ity (VR) technology powered by generative AI is also seeing widespread adop-
tion across organizations. Indeed, industry titans like Walmart (Lewis, 2019) and 
the National Football League (Apstein, 2015; Harrison, 2024) have incorporated 
AI-powered VR into their training systems; such VR allows for trainees to hone 
their skills in an artifcial environment high in both psychological and mundane 
realism. Further still, AI can also be used to enhance training procedures in high-
risk occupations. The FBI and DEA, for example, have used “fuzzy logic” AI 
roleplaying systems—ones that can imitate human reasoning and cognition—to 
better prepare offcers for civilian interactions in communities, navigating court-
room testimonies, and building rapport with suspects (Olsen, 2024). Altogether, 
AI can greatly beneft onboarding and training systems—as well performance 
management and appraisal systems, to be discussed in the upcoming section— 
within organizations. 

Like with selection and recruitment, applying AI technologies to onboarding 
and training systems is not within some risks. Perhaps most notably, as hinted 
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at throughout, overreliance on these technologies (i.e., replacing humans with 
them) has the potential to result in negative employee reactions (Gonzalez et al., 
2022). This is especially likely if the focal employee perceives low trust with 
their AI-powered assistant (Choung et al., 2023; Glikson & Woolley, 2020; 
Schreibelmayr et al., 2023). Thus, organizations should take care to integrate 
AI-powered technologies slowly and carefully into their onboarding and train-
ing systems—lest they end up with a dissatisfed workforce that feels threatened 
by their presence (Wang et al., 2023). There are also many employees that have 
expressed AI-related concerns about privacy during onboarding and training 
procedures. Indeed, large amounts of user data is often collected during these 
processes—which can leave employees concerned about how those data will be 
used. Therefore, as AI-powered technologies are integrated into human capi-
tal management systems, organizations should be open (to the extent possible) 
regarding privacy-related concerns with them, and share with their employees 
best practices for protecting their privacy (Daniels, 2024). 

There are several future directions concerning the implementation of 
AI-powered technologies into onboarding and training procedures in organiza-
tions. First, there appear to be efforts behind wider integration of AI mentor-
ship programs (SHRM Advisor, 2024; Stefanic, 2024). These programs, relying 
on tracked user data, would allow for better matching of human mentors and 
mentees—in addition to providing mentees around the clock support and knowl-
edge. These programs would, in implementation, likely look very similar to 
AI-powered LMSs, providing mentees with a hyper-tailored learning experience 
that suits their preferences, needs, and goals. From a research standpoint, more 
information is needed regarding employee reactions to AI-powered onboard-
ing and training materials. Indeed, there is a (comparative) lack of quantitative, 
empirical evidence surrounding AI implementation at this stage of the employee 
lifecycle; most attention has been directed toward the intersection of AI and 
recruitment, selection, and assessment (Hunkenschroer & Luetge, 2022; Köchling 
& Wehner, 2023; Tippins et al., 2021). 

PERFORMANCE MANAGEMENT AND APPRAISAL 

Effective and practical performance management and appraisal systems are para-
mount for organizational success (Aguinis & Pierce, 2008; Murphy & Cleveland, 
1995; Murphy et al., 2018). Performance appraisal refers to the—often infrequent— 
formal process in which employees are evaluated by a managerial fgure, who 
assesses (and typically scores) their performance using a set of criteria before sharing 
their assessments with the focal employee. Performance management, meanwhile, is 
a term that collectively refers to the wide array of activities, policies, and procedures 
used by an organization to help employees improve their job performance (DeNisi & 
Murphy, 2017). Without effective performance appraisal and management systems, 
organizations will have little knowledge of who to hire, who to train, who to pro-
mote, and who to terminate. Below, we will discuss avenues for AI integration into 
these systems. 
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Performance appraisal in some organizations is already being augmented by 
AI-powered technologies. The primary limitation of traditional performance 
appraisal methods are that they are often recall-based; memories can be distorted 
in numerous ways (e.g., imagination infation, see Schacter et al., 2011), which 
can make them unreliable in certain circumstances. By leveraging AI-powered 
technologies during the performance appraisal process, managerial fgures can 
get a “full picture” look at an employee’s performance between appraisal peri-
ods. Indeed, as noted by Galarza (2023), AI-powered technologies can be used 
to quickly process and analyze work-related data (from multiple sources, includ-
ing emails and instant messages) and provide real-time feedback to employees 
on the job. Moreover, these technologies can also take this data, in tandem with 
written performance reviews from managerial fgures, and create custom perfor-
mance goals for individual employees (Galarza, 2023). This process of collecting 
employee data, providing (real-time or otherwise) feedback, and aiding with goal 
setting are also fundamental to performance management processes. Recently, 
research has started showing initial validity evidence for supervised NLP and 
SOTA LLMs in scoring unstructured performance appraisal text (Speer et al., 
2024). Put differently, AI-powered technologies allow managers to easily engage 
in and implement performance management strategies that are informed by the 
data collected during the performance appraisal process. An applied example of an 
AI-augmented performance appraisal/management system is illustrative; Workday, 
Inc. uses generative AI—trained on a dataset that contains, on average, 625 bil-
lion employee-customer interactions per year—to create custom growth plans for 
individual employees, designed to embed them into their jobs and develop their 
skills (Workday, 2023). 

Of course, there are potential limitations to consider regarding the use of 
AI-powered technologies during the performance appraisal and management pro-
cesses. In addition to the overarching concerns surrounding privacy and negative 
employee reactions, there are also concerns surrounding AI-powered technologies’ 
interpretation of employee performance data. Studies have found that certain genera-
tive AI tools, like ChatGPT, have the potential to (akin to human raters during the 
performance appraisal process, see Spence and Keeping, 2011; Storm et al., 2023) 
insert various biases into the language and content of their performance feedback 
(Snyder, 2023). Indeed, these technologies are often only as “good” as the data they 
are trained on; it is important for managers to understand that AI-powered technolo-
gies are not a panacea for performance appraisal/management woes. Put succinctly: 
stitching AI onto criterion-defcient performance-related systems to “fx things” is akin 
to putting a Band-Aid on a massive wound. There is no hard and fast work around for 
poorly designed performance appraisal and management systems; constructing these 
systems “the old-fashioned way” (i.e., via job analytic techniques) is wise before 
integrating AI approaches. Moving forward, researchers should continue to deter-
mine when and how AI-powered technologies produce biased performance-related 
output—as well as ways to eliminate such biases when they appear. Such knowledge 
would be of heightened importance for organizations—as would a deeper under-
standing of how employees evaluate and perform under AI-augmented appraisal/ 
management systems (Brown et al., 2024). 
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SOCIAL DYNAMICS AT WORK AND OFFBOARDING 

Apart from selection, onboarding, training, and performance management and 
appraisal—organizations invest a large amount of resources into ensuring that the 
social environment of the workplace is one that is supportive and engaging (Freier 
& Hughes, 2024). This is because both support and engagement are key predictors 
of employee performance (Mathieu et al., 2019; Mazzetti et al., 2023). Naturally, 
AI-powered technologies have been leveraged to promote these constructs. Work 
engagement, which is a positive, fulflling, work-related psychological state that 
stems from the combination of three interrelated dimensions: vigor (i.e., energy and 
resilience), dedication (i.e., a sense of pride and meaning), and absorption (i.e., being 
happily engrossed in your work such that time fies by; Schaufeli & Bakker, 2004), 
is one of the more studied psychological constructs in the organizational sciences 
(Bakker et al., 2023; Christian et al., 2011; Knight et al., 2017). In addition to being 
related to increased task performance, work engagement is also related to resilience, 
optimism, proactivity, job satisfaction, job commitment, and even life satisfaction 
(Mazzetti et al., 2023). AI-powered technologies that are designed to assist with 
training and performance management efforts can also be leveraged to increase 
employee work engagement; these technologies can not only use onboarding and 
training data to assign people to roles that ft their interests and skills, but also break 
up complex tasks into smaller, more actionable parts (Hashim, 2024). 

Regarding social support, one of the most widely implemented generative AI 
tools are chatbots. Indeed, survey data from Forbes notes that nearly half of all orga-
nizations (47%) are currently using or plan to use generative AI as digital personal 
assistants—providing employees with instantaneous work-related support (Haan & 
Watts, 2023). When employees perceive satisfactory availability of work-related sup-
port resources, they tend to report lower levels of burnout, role stress, and turnover 
intentions (Mathieu et al., 2019). 

In the future, it is likely that AI-powered technologies will be used to not only 
promote engagement and provide support resources, but also to prevent burnout 
(Henkin, 2023). Indeed, tracking employee data (ethically and above board, as refer-
enced in our onboarding and training section) provides AI-powered technologies the 
opportunity to fag employees who may be using language (in internal communica-
tions) refective of burnout. In this case, managers would be able to provide targeted 
support to employees who may be experiencing such chronic stress. 

Finally, the last stage of the employee lifecycle is one’s departure from their 
organization. Also known as offboarding, AI-powered technologies can streamline 
procedures such as exit interviews and quickly analyze data from these and exit sur-
veys. Akin to other stages of the employee lifecycle, these technologies can also cre-
ate a compassionate and custom experience for individual employees. Specifcally, 
generative AI systems can help employees navigate the complexities of maintaining 
their benefts (e.g., healthcare coverage), rolling over (or otherwise managing) their 
401(k), and fnding new employment (When, 2024). Moreover, beneftting those in 
managerial roles, these technologies can aid in fnding successors for roles left vacant 
after employee departure. Akin to AI integration at other stages of the employee 
lifecycle, organizations should take great care to ensure that data collected during 
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the offboarding process is properly protected. Moreover, considering that quality 
person-to-person exchanges during offboarding are often paramount for maintain-
ing residual commitment (König et al., 2022), AI should not replace humans even at 
this fnal stage of the employee lifecycle. Indeed, as a throughline, the best approach 
is augmentation, rather than full automation. 

ETHICAL CONSIDERATIONS AND CONCLUSIONS 

Although there are very real concerns around bias and fairness—and even some 
pessimism around job alienation and displacement—with applications of genera-
tive AI and LLMs, there is also a “bright side” to a world of work integrated with 
these powerful new technologies. Looking forward, we can imagine a workplace 
where AI-powered personalized learning and development programs adapt in real-
time to employees changing needs and career aspirations, organizations are using 
LLMs to enhance their people listening efforts and understand nuanced employee 
sentiment and culture to proactively boost engagement and well-being before 
issues arise, and generative AI becoming a partner in strategic workforce plan-
ning, providing actionable real-time insights into skill gaps, succession planning, 
and organizational design to ensure that every employee is aligned with organiza-
tional goals and fnds their work to be purposeful. 

Taking a human-centered, ethical, and responsible approach to generative AI 
research, development, and deployment at work is critical for ensuring that the future 
of AI at work is “bright”. Responsible AI in the workplace must consider not only 
algorithmic bias, explainability, and privacy, but also fundamental ethical princi-
ples that preserve and enhance the human experience at work. Key considerations 
include: 

1. Human-Centric: AI systems should augment and empower human capabili-
ties, not replace human judgment entirely. 

2. Fairness and Non-Discrimination: AI systems must be designed and imple-
mented to promote equity and avoid perpetuating or exacerbating biases. 

3. Transparency, Explainability, and Accountability: The use of AI in HR 
processes should be openly communicated, with clear mechanisms for 
explanation and redress. 

4. Privacy and Data Governance: Robust safeguards must be in place to pro-
tect employee data and respect individual privacy rights. 

5. Continuous Monitoring and Improvement: Regular audits and assessments 
should be conducted to ensure AI systems remain fair, accurate, and aligned 
with organizational values. 

To move from principles to practice, it should also consider implementing cross-
functional teams to help ensure that diverse perspectives are considered when 
using AI at work, establishing clear escalation pathways to question AI-driven 
decisions, and implementing routine responsible AI checklists and audits. There 
are several responsible AI principles available, including the AI Risk Management 
Framework from NIST in the US and the AI Act in the EU, that organizations can 



 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

  

 

 

200 AI and Gamifcation Technologies for Complex Work 

adopt and tailor to ft their own specifc needs. To help address resistance to AI at 
work, organizations should prioritize transparent communication, involve employ-
ees in the design process and invest in AI upskilling, and take a phased approach 
to rolling out AI where it’s clearly communicated how AI will augment—and not 
replace—existing processes. It’s important to remember that human experience at 
work is the focus. AI should empower people to have positive work experiences, 
not diminish them. 

For organizational psychologists, LLMs are technologically complex, but are 
fundamentally a new tool that simply allows us to work with large amounts of 
(previously) unstructured data in meaningful ways. As with any new tool, there 
are going to be periods of experimentation and excitement along with roadblocks 
and disillusionment as we realize that some of our non-LLM methods are better 
suited from some use cases (e.g., embedding search and RAG are exciting, but 
maybe SQL queries are alright for static searches). Going back to our analogy of an 
LLM as a highly capable-yet-naïve intern, LLMs need clear guidance and context, 
ethical oversight, and a human manager reviewing and validating of their outputs. 
So as we use generative AI across the employee lifecycle, our ultimate goal should 
be to create human-centered workplaces where technology enhances, rather than 
diminishes, the employee experience, making work more engaging, fair, and ful-
flling for all. 

NOTE 
1. An example SJT available from SHL, an industry leading assessment provider, presents 

a situation where applicants are managing an understaffed, overwhelmed team but need 
to improve performance either by (i) setting up weekly team meetings, (ii) punishing 
low performers, or (iii) implementing personalized goal setting for each team member 
(with options one and three being preferred). 
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